Final

Radiological Site Assessment Report

Sievers Sandberg United States Army Reserve Center (NJ013) Route 130 & Artillery Avenue Pedricktown, NJ

Contract No. W912QR-12-D-0027 Delivery Order No. 0002

Prepared For:

U.S. Army Corps of Engineers
Louisville District

Prepared By:

TerranearPMC

222 Valley Creek Blvd., Suite 210 Exton, PA 19341

July 2013

Final Radiological Site Assessment Report

Sievers Sandburg United States Army Reserve Center (NJ013) Route 130 & Artillery Avenue Pedricktown, NJ

Authored By:

Date: 7/15/2013

Joseph Green, Health Physicist

STATEMENT OF INDEPENDENT TECHNICAL REVIEW

TerranearPMC (TPMC) has completed the Final Report on Radiological Site Assessment at the Sievers Sandburg United States Army Reserve Center located in Pedricktown, New Jersey.

Notice is hereby given that an independent technical review has been conducted that is appropriate to the level of risk and complexity inherent in the project. During the independent technical review, compliance with established policy principles and procedures, utilizing justified and valid assumptions, was verified. This included review of data quality objectives; technical assumptions; methods, procedures, and materials to be used; the appropriateness of data used and level of data obtained; and reasonableness of the results, including whether the product meets the customer's needs consistent with law and existing US Army Corps policy.

Significant concerns and the explanation of the resolution are as follows:

Internal TPMC Technical Review comments are documented in the project file.
 Changes to the report addressing the comments have been verified by the Project Manager. As noted above, all concerns resulting from independent technical review of the project have been considered.

Daniel F. Caputo, P.E., CHP

Walter L. Wiepin

Project Manager, TPMC

toild Gut

Date: 7/15/2013

Date: 7/15/2013

Walter Wuicik, P.E., PMP

Independent Technical Review Team Leader, TPMC

TABLE OF CONTENTS

				<u>Page No.</u>
ES 1.	0 EXEC	CUTIVE SU	UMMARY	1
	ES 1.	1 INTROD	DUCTION	1
	ES 1.	2 PROJE	CT OVERVIEW	1
	ES 1.	3 FINDING	GS AND RECOMMENDATIONS	1
1.0	PRO.	JECT BAC	CKGROUND	3
	1.1	SITE HI	STORY, LOCATION AND FEATURES	3
	1.2	AREAS	OF CONCERN	4
2.0	OBJE	ECTIVES A	AND RADIOLOGICAL ASSESSMENT METHODOLOGY	6
	2.1	RADIOL	OGICAL ASSESSMENT METHODOLOGY	6
	2.2	FIELDW	ORK ACTIVITIES	6
			Pre-Mobilization Activities Field Activities	6 8
3.0	SAM	PLE COLL	LECTION AND DATA ANALYSIS	11
	3.1	REMOV	ABLE SMEAR SAMPLING	11
	3.2	SAMPL	E IDENTIFICATION	11
	3.3	SAMPL	E CONTAINERS, PRESERVATION, AND HOLDING TIMES	11
	3.4	ANALY	TICAL METHODS	11
	3.5	QUALIT	Y ASSURANCE/QUALITY CONTROL	11
		3.5.1 3.5.2	Instrument Use / Handling Analytical Data Quality and Review	11 12
4.0	SUM	MARY OF	FIELD INVESTIGATION AND LABORATORY RESULTS	13
	4.1	RESULT	TS SUMMARY	13
	4.2	FIELD II	NVESTIGATION RESULTS	19
		4.2.1 4.2.2	Site Interviews / Visual Inspection Field Measurements	19 19
	4.3	LABOR	ATORY RESULTS	20

TABL	E OF CON	TENTS (CONTINUED)							
5.0	CONCLU	SIONS	21						
6.0	RECOMMENDATIONS								
7.0	REFEREI	NCES	23						
LIST	OF FIGURE	ES .							
Figure	2 1-1	Site Aerial View	5						
LIST	OF TABLE	s							
Table	2-1	Portable Instrumentation	9						
Table	4-1	Summary Results Table	14						
Table	4-2	Site Assessment Criteria	19						
LIST	OF APPEN	DICES							
Appen	ndix A	Historical Review Checklist							
Appen	ndix B	Visual Inspection Checklist							
Appen	ndix C	Documentation of Survey Approach							
Appen	ndix D	Quality Control Data							
		D.1 – Operating Range							
		D.2 – Instrument Daily Checks							
		D.3 – Instrument Calibration Sheets							
Appen	ndix E	Survey Record Form							
Appen	ndix F	Sample Description Log							
Appen	ndix G	Survey Sketches							
Appen	ndix H	High Results Narrative							
Appen	ndix I	Site Photos							
Appen	ndix J	Analytical Results							

TABLE OF CONTENTS (CONTINUED)

LIST OF ACRONYMS

ABAR Alternate Battery Acquisition Radar

ASME American Society of Mechanical Engineers

cm² Square Centimeter
CoC Chain of Custody
cpm Counts per Minute

DMA Defense Mapping Agency
DoD Department of Defense
DOE Department of Energy

DOT Department of Transportation
EBS Environmental Baseline Survey
ECP Environmental Condition of Property

ELAP Environmental Laboratory Accreditation Program

EPA Environmental Protection Agency ES&H Environmental Safety and Health

FP Field Procedure ft² Square Feet

GEL General Engineering Laboratories

gcpm Gross counts per minute

hr Hour

IEC International Electrotechnical Commission
ISO International Organization for Standardization

m² Square Meter

MARSSIM Multi Agency Radiation Survey and Site Investigation Manual

MDA Minimum Detectable Activity
MEP Military Equipment Parking
NBC Nuclear Biological Chemical

NELAC National Environmental Laboratory Accreditation Conference

NIST National Institute of Standards Technology
NORM Naturally Occurring Radioactive Material
NQA-1 Nuclear Quality Assurance Level -1
NRC Nuclear Regulatory Commission
PAARNG Pennsylvania Army National Guard

PM Project Manager POC Point of Contact

POL Petroleum, Oils and Lubricants

pCi/L Picocuries per Liter
QA Quality Assurance
QC Quality Control

QSM Quality Systems Manual

RADIAC Radiation Detection, Indication and Computation

RAM Radioactive Material

RSAR Radiological Site Assessment Report

TABLE OF CONTENTS (CONTINUED)

 $\begin{array}{ll} \text{RSO} & \text{Radiation Safety Officer} \\ \text{TPMC} & \text{TerranearPMC, LLC} \\ \mu \text{R} & \text{Micro Roentgen} \end{array}$

USACE U.S. Army Corps of Engineers
USARC U.S. Army Reserve Center

USAR U.S. Army Reserve

USEPA U.S. Environmental Protection Agency

ES 1.0 EXECUTIVE SUMMARY

ES 1.1 INTRODUCTION

This radiological site assessment report (RSAR) describes objectives, procedures, and findings of the radiological assessment activities conducted at the Sievers Sandburg United States Army Reserve Center (USARC) located in Pedricktown, New Jersey, hereafter referred to as the "Sievers Sandburg Site" or "the Site".

This report was prepared by TerranearPMC, LLC (TPMC) of Exton, Pennsylvania, to fulfill the requirements of Contract W912QR-12-D-0027, Delivery Order No. 0002 with U.S. Army Corps of Engineers (USACE), Louisville District.

ES 1.2 PROJECT OVERVIEW

Radiological assessment of the Site began with a review of available historical information prior to mobilization in the field. The Site has a low probability for being impacted by residual radioactive materials based on the following three criteria inherent to U.S. Army Reserve (USAR) operations: 1) only small quantities of radioactive materials were used, thus presenting an inherently low risk for release or exposure; 2) the radioactive sources used at these sites are typically sealed sources, thus minimizing release to the environment; and 3) standard Army protocols that require strict management, control, and reporting of radioactive material use. This historical information was used to develop the survey approach and methodology used by the field team in performing the radiological site assessment.

The radiological site assessment activities were performed on May 7-9, 2013. Upon arrival at the Site, the team performed visual inspections of the facility and conducted interviews with key Site personnel to obtain additional information used to refine the survey approach. Once the survey approach was defined, the team conducted radiological surveys for gamma and alpha/beta radiation using hand-held instruments. In addition, the field team obtained smear/wipe samples at various locations for off-site laboratory analysis to determine the presence of removable alpha, beta, and tritium radioactivity. The field team was unable to access the vault in Building 404 and basement in building 273. The field team remobilized on May 21, 2013 to conduct radiological survey at inaccessible areas during the first site visit.

ES 1.3 FINDINGS AND RECOMMENDATIONS

All U.S. Army Reserve (USAR) personnel and equipment have vacated the Site. After review of the related site historical documents, personnel interviews, site inspections, visual walk downs, and radiological surveys, there is evidence that radioactive materials/commodities were used or stored at the Sievers Sandburg Site. However, based on our findings, there is no evidence to suggest that radiological commodities were improperly managed at the Site or that radiological material was released to the environment.

During the Site visit, the survey team performed a comprehensive radiological survey of all locations where radioactive materials may have been used or stored based on historical evidence, interviews, and site inspection findings. The radiological survey included the following samples and data points: one hundred fifty six (156) direct alpha and beta measurements, one hundred fifty six (156) gamma radiation exposure rate measurements; fifty eight (58) smear samples for removable alpha /beta radioactivity; and twenty four (24) tritium wet smear samples. All samples were sent to the off-site laboratory for analysis. None of the survey results

exceeded the most restrictive action levels as established by the U.S. Nuclear Regulatory Commission (NRC) Regulatory Guide (Reg Guide) 1.86 Table-I limits.

The radiological assessment results documented in this report support the finding that the Sievers Sandburg Site does not currently possess radioactive materials or contain residual radioactivity above the Reg Guide 1.86 Table-I limits. Based on the historical information and supporting survey results, the site may be considered radiologically non-impacted and available for unrestricted use, in accordance with NRC NUREG 1575/EPA 402-R-97-016, Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM), Revision 1 guidance.

1.0 PROJECT BACKGROUND

1.1 SITE HISTORY, LOCATION AND FEATURES

The Sievers Sandburg United States Army Reserve Center (USARC) Site (hereafter referred to as the "Sievers Sandburg Site" or "the Site") includes approximately 40 acres of land improved with eleven buildings, four detached garages and three storage sheds. A military vehicle parking area also exists on the northwest corner of the Property. According to historical documentation, in 1917, the USACE began acquiring farms along the Delaware River to serve as the Delaware Ordnance Depot. In 1954, the Delaware Ordnance Depot was redesignated by the Army as the Raritan-Delaware Storage Activity. The Camp Pedricktown property was transferred to Fort Dix in 1962. In 1965, 42 facilities were leased to the Salem County Technical Institute until the late 1960s. The federal government declared 23 acres of the Philadelphia Air Defense Site as surplus, and transferred the property to Salem County in 1972. In 1975, 11 of the 23 acres were transferred to Salem County Community College. In 1993, jurisdiction of the 23 acre property was given to the 79th Army Reserve Command (ARCOM). In 1996, the property was expanded to the present-day size of 40 acres (ECP,2013).

Building 171

It is a three story concrete block with brick exterior structure built in 1942. Its use was for Headquarters administrative purposes and is 7,067 square feet (ft²).

Building 173

It is a one story concrete block structure built in 1961. Its use was for officer's mess hall purposes and is 7,215 ft².

Building 190

It is a one story concrete block with brick exterior structure. Its use was for guard shed purposes and is 50 ft².

Building 273

It is a three story concrete block with brick exterior structure built in 1939. Its use was for enlisted barracks and more recently office purposes and is 15,073 ft².

Building 274

It is a two story concrete block with brick exterior structure built in 1939. It was used as old post hospital/dispensary purposes and is 4,191 ft².

Building 285

It is a one story wood exterior structure on concrete pad. Its use was for garage storage purposes and is 500 ft².

Building 404

It is a large brick structure that was divided into a firehouse, train roundhouse, and automotive garage. The fire garage section contains three vehicular openings with two round windows. It is one story with some 2nd level storage, concrete block with brick exterior structure, built in 1942, and 22,205 ft².

Building 413

Building 413 was formerly a gas station used to fuel motor pool vehicles and more recently storage. It is a one story concrete block structure built in 1931 and is 257 ft².

Building 434

This general storage building is a long one-story rectangular structure with an elevated concrete loading platform. Ten roll-up doors allowed materials to be unloaded directly from trucks into the warehouse. It was built in 1951 and is 15,040 ft².

Building 464

It is a low, elongated one-story building built in 1951 and is 15,040 ft². There are several irregularly spaced steel entry doors throughout.

Building 475

It is a one story concrete block. Its use was for latrine purposes and is 100 ft².

Houses and Garages

These facilities should not have stored any radioactive material except smoke detectors and were not surveyed.

According to an Environmental Baseline Survey (EBS) conducted in 2003, radon monitoring occurred at the Property in 1992 at Buildings 171, 173, 273, and 404. None of these buildings had radon levels exceeding 4.0 pCi/L. Additional radon testing was conducted in 1998 at Buildings 171, 273, 274, 404, 434 and 464. Radon concentrations ranged from 0.1-0.5 pCi/L (ECP, 2013).

An aerial image of the Site with boundary outline is provided in Figure 1-1.

1.2 AREAS OF CONCERN

After review of the Site and related historical documents, personnel interviews, site inspections, visual walk downs, and surveys, indications were found of the past storage and use of radiological commodities at the Sievers Sandburg Site. Based on the mission of the Army Reserve units stationed at the Site, it is reasonable to assume that some low-level radioactive commodities were also stored/used at the Site (such as lensatic compasses, personal Radiation Detection, Indication and Computation (RADIAC) meters, and small arms weapons sights, etc.). There is no evidence to suggest that any radiological commodities were improperly used or stored at the Site or that any radioactive materials from these items were released to the environment.

Figure 1-1 Site Aerial View

Sievers Sandburg USARC Route 130 & Artillery Avenue Pedricktown, NJ

Note: Red outline shows approximate Site boundary.

2.0 **OBJECTIVES AND RADIOLOGICAL ASSESSMENT METHODOLOGY**

The overall objectives of the Radiological Site Assessments are 1) to provide sufficient data to demonstrate areas with un-measureable or acceptable levels of radioactive contamination are suitable for release for unrestricted use in accordance with the criteria presented in Section 4.0: and 2) define the nature and extent of any identified contamination or residual radioactive materials. The intent is to provide the stakeholders with sufficient data to support the radiological unrestricted release of the specified facility or to define the nature and extent of any remaining radiological commodities or residual radioactive material.

2.1 RADIOLOGICAL ASSESSMENT METHODOLOGY

The Site assessment was performed in accordance with the MARSSIM guidance document (NRC NUREG 1575) protocols. Survey action levels for alpha and beta radiation levels were obtained from NRC Reg Guide 1.86 Table-I. In accordance with industry practice, the area gamma radiation survey action limit was based on an "indistinguishable from background" determination that is typically 2 to 3 times ambient background radiation levels. The Site did not have a history of radiological releases, accidents, or radioactive waste disposal; and thus the survey was intended to support a MARSSIM non-impacted definition leading to an unrestricted radiological release determination. Survey design was intended to remain flexible to account for any real-time measurements or information that becomes available during the survey process.

For this project, radiological assessment methodology included reviewing available historical and current information; performing visual inspections; conducting interviews; conducting general radiation surveys; obtaining smear and wipe survey samples; laboratory analysis of smear/wipe samples; and evaluation/interpretation of the analytical results. Based on the historical reviews and interviews, no evidence was found to suggest that radiological commodities were improperly managed at the Site, or that radiological material was released. However, based on the fact that the historical record is often incomplete and the potential exists for loss or leakage of radiological commodities, a radiological site assessment is warranted. Based on the existing historical evidence and general USAR knowledge base, the Sievers Sandburg Site qualified for the simplified assessment procedure of Appendix B of MARSSIM. This determination is based on the small quantities of mostly sealed radioactive materials likely used and/or stored at the Site, and the fact that no evidence exists for inadvertent loss or release of radioactive materials from the Site.

2.2 FIELDWORK ACTIVITIES

Fieldwork activities may be grouped into two categories:

- 1. Pre-mobilization Activities
- 2. Field Activities

2.2.1 **Pre-Mobilization Activities**

Pre-mobilization activities included those actions required to ensure the team was fully prepared to perform their job tasks upon arrival at the project site.

TPMC separated the pre-mobilization phase into the following activities:

- 1. Historical Due Diligence
- 2. Staffing and Training

- 3. Procurement Actions
- 4. Shipment of Equipment and Supplies

2.2.1.1 Historical Due Diligence

TPMC initiated due diligence review by researching the available site assessment reports for the Site. In addition, available Army literature regarding radioactive commodity use and storage was reviewed (TB 43-0116). The Site review and associated documentation were logged and referenced for use in field activities.

The results of the historical due diligence review are documented in the Historical Review Checklist (Appendix A). The historical documentation does not specifically identify isotopes used at the Site; however, based on our experience, the following isotopes have the highest probability of being present at the Site based on our knowledge of radioactive sources found in the Army commodity inventory: H-3, Ra-226, Sr-90, Cs-137, Th-232, U-238, Pu-239, Ni-63, Pm-147, Co-60, Am-241. Typical types of radioactive commodities managed at a typical USARC include Radiation Detection, Indication and Computation (RADIAC) meters; chemical agent detectors; moisture density gauges; lensatic compasses; night-vision goggles; radioluminescent weapon sights, and wristwatches; and armored vehicle equipment gauges.

2.2.1.2 Staffing and Training

TPMC delegated full responsibility and authority to the Project Manager (PM) regarding project performance and management of project staff. The PM had direct access to top-level management of TPMC and the subcontractors so that contract, management, and staff needs were immediately met. In addition, key personnel were selected based on their expertise, credentials, relevant experience, communication skills, flexibility, and history/institutional knowledge.

TPMC management, technical support personnel, and field teams worked together as a fully integrated team. The infrastructure to accomplish this was in place and employed existing TPMC corporate processes and procedures. The TPMC corporate Radiation Safety Officer (RSO) conducted initial radiological, and health and safety training for field personnel. Project personnel received awareness training on the following topics:

- **General Employee Training**
- **Hazardous Communications**
- Personnel Protective Equipment
- Blood-Borne Pathogens
- **Confined Space**
- Applicable Site-Required Training, if required
- Radiological Field Procedures and related forms

2.2.1.3 Procurement Actions

TPMC's Procurement Manager controlled the purchase, leasing and subcontracting for material, equipment, and manpower support required for this project. Procured items included, but were not limited to, the following items:

- Ludlum Model 19 MicroR survey meter (area gamma radiation)
- Ludlum Model 2360 scalar/rate meter with data logging capabilities
- Ludlum Model 43-93 Dual alpha/beta scintillation detector

- Instrumentation check sources (thorium-230, technetium-99 and cesium-137)
- Support tools (i.e. hand-tools, masslin mops, flashlights, tape measures, etc)
- Recording equipment/documents
- · Communication devices
- Digital cameras with media storage cards
- Personnel Protective Equipment

2.2.1.4 Shipment of Supplies

To expedite field activities while decreasing the amount of equipment and supplies carried by field staff during initial mobilization, TPMC shipped field supplies to the Site location via common carrier. These materials and supplies included items listed in Section 2.2.1.3.

Radioactive check sources were transported in full compliance with Department of Transportation (DOT) 49 Code of Federal Regulations (CFR) Part 173 as excepted radioactive materials, instrument and article shipments.

2.2.2 Field Activities

Field activities were grouped into the following categories:

- Site Walkdown
 - Interviews with key POCs
 - Visual Inspection of Site
- Documentation of Final Survey Approach
- Radiation Surveys
 - Area gamma radiation measurements
 - Direct alpha/beta measurements (total contamination)
 - Qualitative removable alpha/beta contamination (large area wipes)
 - Quantitative removable alpha/beta contamination (100 square centimeter (cm²) smear samples; dry for alpha /beta and wet for tritium analysis)
- Shipment of Samples to Off-site Laboratory

2.2.2.1 Site Walkdown including Visual Inspection and Interviews with key POCs

Upon arrival on-site, the TPMC Team met with Site personnel to gather background information regarding the Site, and to receive site-specific training/indoctrination as required. The team conducted a visual inspection of the Site to identify any radioactive commodities, radiation use areas, or locations where radiation could be present. Results of the visual inspection survey are provided in Appendix B, and the personnel interviews are documented in Appendix C.

2.2.2.2 Documentation of Survey Approach

The TPMC Field Team used historical due diligence reviews, visual inspections, and interviews to finalize the overall survey strategy ultimately implemented at the Site. Visual Inspections, interviews, and historical documentation indicated that radioactive commodities were stored in the Site.

This Site was considered as five MARSSIM survey units. The 1st survey unit included buildings 434, 464 and 475, 2nd survey unit included buildings 171,173 and 190, 3rd survey unit included buildings 404 and 413, 4th survey unit included building 273 and the last survey unit included buildings 274 and 285. Although these facilities would typically be considered MARSSIM Class

3 survey units with only judgmental survey and sampling required, the survey team attempted to initially design the survey using modified Class 2 survey protocols to increase the survey quality – 30 survey points over 1000 m² and 10 sample locations. The Survey Approach Documentation Form for this Site is provided in Appendix C.

2.2.2.3 Radiation Surveys

The Field Team was equipped with the necessary instruments and supplies to perform the radiological assessment surveys in accordance with methodology previously defined. The types of analyses, instrumentation, and detection methods are detailed in Table 2-1.

Table 2-1
Portable Instrumentation

Type of Measurement	Type of Instrument	Detection Method		
Direct measurements for total alpha and beta contamination	Ludlum Model 2360 rate meter with Ludlum Model 43-89 or 43-93 probe	Scintillation/Dual Phosphor		
Wipe tests for removable alpha and beta contamination	Ludlum Model 2360 rate meter with Ludlum Model 43-89 or 43-93 probe	Scintillation/Dual Phosphor		
Low-level gamma radiation exposure rate survey	Ludlum Model 19 MicroR Meter (or equivalent)	Sodium Iodide (Nal) Scintillator		

Prior to taking survey measurements, the team chose background locations as temporary base of operations to conduct instrument quality control and performance checks. These background or reference area(s) were selected to have a very low probability of being impacted by radioactive materials use or storage, floor surfaces representative of the greater building/Site conditions, and in a location remote from any known or probable radioactive use or storage areas. These background reference areas were also the locations where smear/wipe samples were counted and instrument performance verified pre and post survey.

Since field instruments may not have the required sensitivity (MDAs) to effectively measure the removable contamination at the Reg Guide 1.86 action levels, the field measurements of the dry smear samples are considered qualitative measurements, and the definitive/quantitative results removable alpha/beta radioactive measurements are provided by the DoD ELAP approved off-site laboratory. The field team uses this qualitative field data to identify significantly elevated radiation levels, in order to direct additional survey, and to prevent shipping samples with elevated radioactivity to the laboratory without proper notice. While on-site, direct measurements and dry qualitative smear samples results were compared to applicable Reg Guide 1.86 Table-I Limits. Radiation exposure rate levels were compared to Site ambient background levels. Radiological surveys were documented on a standardized survey form that included information on the instrumentation, background levels, measurement type, survey location (maps and/or photos), and survey results.

Wet and dry smears samples were shipped by overnight express shipment to the selected offsite independent Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP) Accredited laboratory, General Engineering Laboratories (GEL) (located in Charleston, South Carolina), for quantitative radiological (gross alpha, beta, and tritium) analysis. Chain of Custody (CoC) forms were completed for all samples, and samples were shipped by traceable means.

2.2.2.4 Sample Custody and Control

The handling and transport of samples destined for analysis at GEL was coordinated by the Team Lead. As a result, each sample was properly labeled and tracked/controlled on a CoC form provided by the laboratory.

Tritium samples were placed inside plastic vials containing a small quantity of de-ionized water, which in turn were placed inside plastic bags to ensure the smears remained moist during transit per GEL instructions. The alpha/beta smears were placed into a plastic bag and sealed. All sample containers were sealed with a tamper resistant label to ensure no tampering during shipment. The samples were then packaged in a Federal Express (FedEx) overnight pouch with air bills completed for shipment and overnight delivery to the GEL laboratory facility. Since the sample media were not suspected of being a hazardous material per DOT, the shipment was handled as non-regulated sample media.

3.0 SAMPLE COLLECTION AND DATA ANALYSIS

3.1 REMOVABLE SMEAR SAMPLING

A total of eighty two (82) quantitative smear samples (100 cm² smear tests) were taken at the Site. This included fifty eight (58) dry smear samples that were collected and analyzed for removable alpha/beta contamination, and twenty four (24) wet smear samples analyzed for tritium contamination. The following sections provide details of the sample collection and analytical methods.

3.2 SAMPLE IDENTIFICATION

The sample identification (ID) numbers were documented on sample field sheets. Sample ID numbers were used on sample labels or tags, field data sheets and/or logbooks and CoC.

3.3 SAMPLE CONTAINERS, PRESERVATION, AND HOLDING TIMES

Gross alpha/beta smear samples were placed in plastic bags per GEL direction. Tritium smears were placed in plastic vials containing a small quantity of de-ionized water per GEL instructions. Preservation and holding times did not apply to these samples.

3.4 ANALYTICAL METHODS

Samples sent to GEL were analyzed for the following parameters, using the corresponding methods:

- Tritium by Liquid Scintillation: GL-RAD-A-002
- Gross alpha/beta by Gas-Flow Proportional Counting: EPA 900.0/SW846 9310/SM 7110B Modified

3.5 QUALITY ASSURANCE/QUALITY CONTROL

Quality Control (QC) was maintained on this project at all stages including portable instrument use / handling, sample integrity, and analytical laboratory data. Requested laboratory reporting limits (RL) were one tenth (1/10) of the action limits in Reg Guide 1.86 Table-I.

3.5.1 Instrument Use / Handling

The team was equipped with hand-held, portable survey instruments, each of which was calibrated by a National Institute of Standards & Technology (NIST) certified off-site facility. Copies of the calibration certificates used for this project are included as Appendix D.3, "Instrument Calibration Sheets". In addition, each day on-site the team performed Instruments Checks (pre- and post-survey) to ensure the instruments were operating within their established ranges.

As data was collected by the field team, the Team Lead provided oversight with regard to the survey methods used, as well as the data sheets generated during execution of the field work. Essentially the Team Lead functioned as first-line reviewer for the project.

3.5.2 Analytical Data Quality and Review

GEL Laboratories has a mature Quality Assurance (QA) program that has been audited and certified by recognized organizations including: DoD Quality Systems Manual (QSM) ELAP, National Environmental Laboratory Accreditation Conference (NELAC), American Society of Mechanical Engineers Nuclear Quality Assurance, Level -1 (ASME/NQA-1), and International Organization for Standardization/International Electrotechnical Commission (ISO/IEC) Guide 17025. The high standards built as part of GEL's QA program were directly applied to the handling, analysis, and data reporting associated with the smear samples generated by this project.

In addition, TPMC personnel routinely reviewed all data packages to ensure the completeness and accuracy of each of the sample reports. This review was performed with the goal to ensure that the sample results received accurately and completely matched the parameters of the Site's sample locations.

4.0 SUMMARY OF FIELD INVESTIGATION AND LABORATORY RESULTS

This section provides a summary of field and laboratory observations, results, data, and interpretation results associated with the radiological site assessment. Summarized results of both field and laboratory activities are provided in Table 4-1. This is followed by a brief discussion of the supporting data obtained during this project.

4.1 RESULTS SUMMARY

Table 4-1 provides a summary record of the data obtained in the field along with the corresponding analytical results from the GEL off-site analytical laboratory. As presented in the table, all survey data and analytical results were either less than the ambient background radiation levels, less than instrument detection limits, or below the conservative NRC Reg Guide 1.86 Table-I limits. The detailed survey results are provided in Appendix E, and sample location details are provided in Appendix F. A survey sketch identifying sample locations is provided in Appendix G. Photos of sample locations are provided in Appendix I.

(Space intentionally left blank)

Table 4-1 Summary Results Table

			Contami	nation	Exposure Rate			
Survey	Direct	t Field	Re	emovable / 3	Smear	Surface Contact	One meter Above Surface	
Location Number	(dpm cn	/ 100 n ²)	La	ab (dpm /10	0 cm²)	(μR/hr)	(μR/hr)	
	α	β	α	β	Tritium	(μι σ)	(μιν)	
Location /	Area : Su	rvey Uni	t 1 (Build	lings 434,46	34 and 475)			
1	<bkg< td=""><td><bkg< td=""><td>ND</td><td>ND</td><td>-</td><td>7.0</td><td>7.5</td></bkg<></td></bkg<>	<bkg< td=""><td>ND</td><td>ND</td><td>-</td><td>7.0</td><td>7.5</td></bkg<>	ND	ND	-	7.0	7.5	
2	3.8	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>7.0</td><td>7.0</td></bkg<>	-	-	-	7.0	7.0	
3	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>6.0</td><td>6.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>6.0</td><td>6.0</td></bkg<>	-	-	-	6.0	6.0	
4	8.0	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>5.0</td><td>5.0</td></bkg<>	-	-	-	5.0	5.0	
5	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>5.0</td><td>5.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>5.0</td><td>5.0</td></bkg<>	-	-	-	5.0	5.0	
6	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>5.0</td><td>5.5</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>5.0</td><td>5.5</td></bkg<>	-	-	-	5.0	5.5	
7	3.8	<bkg< td=""><td>ND</td><td>ND</td><td>ND</td><td>5.5</td><td>5.5</td></bkg<>	ND	ND	ND	5.5	5.5	
8	3.8	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>5.0</td><td>5.0</td></bkg<>	-	-	-	5.0	5.0	
9	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>9.0</td><td>9.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>9.0</td><td>9.0</td></bkg<>	-	-	-	9.0	9.0	
10	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>6.0</td><td>5.5</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>6.0</td><td>5.5</td></bkg<>	-	-	-	6.0	5.5	
11	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>5.0</td><td>5.5</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>5.0</td><td>5.5</td></bkg<>	-	-	-	5.0	5.5	
12	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>4.5</td><td>5.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>4.5</td><td>5.0</td></bkg<>	-	-	-	4.5	5.0	
13	<bkg< td=""><td><bkg< td=""><td>ND</td><td>ND</td><td>ND</td><td>6.5</td><td>7.0</td></bkg<></td></bkg<>	<bkg< td=""><td>ND</td><td>ND</td><td>ND</td><td>6.5</td><td>7.0</td></bkg<>	ND	ND	ND	6.5	7.0	
14	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>6.0</td><td>6.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>6.0</td><td>6.0</td></bkg<>	-	-	-	6.0	6.0	
15	<bkg< td=""><td><bkg< td=""><td>ND</td><td>ND</td><td>ND</td><td>8.5</td><td>9.0</td></bkg<></td></bkg<>	<bkg< td=""><td>ND</td><td>ND</td><td>ND</td><td>8.5</td><td>9.0</td></bkg<>	ND	ND	ND	8.5	9.0	
16	<bkg< td=""><td><bkg< td=""><td>ND</td><td>ND</td><td>-</td><td>6.0</td><td>6.0</td></bkg<></td></bkg<>	<bkg< td=""><td>ND</td><td>ND</td><td>-</td><td>6.0</td><td>6.0</td></bkg<>	ND	ND	-	6.0	6.0	
17	<bkg< td=""><td><bkg< td=""><td>ND</td><td>ND</td><td>ND</td><td>10.0</td><td>10.5</td></bkg<></td></bkg<>	<bkg< td=""><td>ND</td><td>ND</td><td>ND</td><td>10.0</td><td>10.5</td></bkg<>	ND	ND	ND	10.0	10.5	
18	<bkg< td=""><td>45.7</td><td>0.648</td><td>ND</td><td>-</td><td>7.5</td><td>7.5</td></bkg<>	45.7	0.648	ND	-	7.5	7.5	
19	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>5.5</td><td>6.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>5.5</td><td>6.0</td></bkg<>	-	-	-	5.5	6.0	
20	3.8	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>7.5</td><td>7.0</td></bkg<>	-	-	-	7.5	7.0	
21	3.8	<bkg< td=""><td>0.703</td><td>1.34</td><td>ND</td><td>4.0</td><td>4.0</td></bkg<>	0.703	1.34	ND	4.0	4.0	
22	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>4.5</td><td>4.5</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>4.5</td><td>4.5</td></bkg<>	-	-	-	4.5	4.5	
23	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>4.5</td><td>5.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>4.5</td><td>5.0</td></bkg<>	-	-	-	4.5	5.0	
24	3.8	<bkg< td=""><td>0.736</td><td>1.16</td><td>-</td><td>3.5</td><td>4.0</td></bkg<>	0.736	1.16	-	3.5	4.0	
25	8.0	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>4.0</td><td>4.0</td></bkg<>	-	-	-	4.0	4.0	
26	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>4.0</td><td>4.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>4.0</td><td>4.0</td></bkg<>	-	-	-	4.0	4.0	
27	3.8	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>4.5</td><td>5.0</td></bkg<>	-	-	-	4.5	5.0	
28	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>4.0</td><td>4.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>4.0</td><td>4.0</td></bkg<>	-	-	-	4.0	4.0	
29	<bkg< td=""><td><bkg< td=""><td>0.735</td><td>0.848</td><td>ND</td><td>4.0</td><td>4.0</td></bkg<></td></bkg<>	<bkg< td=""><td>0.735</td><td>0.848</td><td>ND</td><td>4.0</td><td>4.0</td></bkg<>	0.735	0.848	ND	4.0	4.0	
30	<bkg< td=""><td><bkg< td=""><td>ND</td><td>ND</td><td>-</td><td>4.0</td><td>3.5</td></bkg<></td></bkg<>	<bkg< td=""><td>ND</td><td>ND</td><td>-</td><td>4.0</td><td>3.5</td></bkg<>	ND	ND	-	4.0	3.5	
Location / A	Area : Su	rvey Uni	t 2 (Build	lings 171, 1	73 and 190)			
31	1.7	149.0	ND	ND	-	10.0	10.0	
32	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>5.0</td><td>5.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>5.0</td><td>5.0</td></bkg<>	-	-	-	5.0	5.0	

14

			Contami	nation	Exposure Rate			
Survey	Direct	t Field	Re	emovable /	Smear	Surface Contact	One meter Above Surface	
Location Number	(dpm / 100 cm ²)		Lab (dpm /100 cm ²)			(μR/hr)	(μR/hr)	
	α	β	α	β	Tritium		u /	
33	1.7	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>10.0</td><td>10.0</td></bkg<>	-	-	-	10.0	10.0	
34	1.7	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>4.0</td><td>4.5</td></bkg<>	-	-	-	4.0	4.5	
35	<bkg< td=""><td><bkg< td=""><td>0.715</td><td>1.03</td><td>ND</td><td>4.0</td><td>4.0</td></bkg<></td></bkg<>	<bkg< td=""><td>0.715</td><td>1.03</td><td>ND</td><td>4.0</td><td>4.0</td></bkg<>	0.715	1.03	ND	4.0	4.0	
36	10.1	<bkg< td=""><td>ND</td><td>ND</td><td>-</td><td>3.0</td><td>3.0</td></bkg<>	ND	ND	-	3.0	3.0	
37	1.7	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>3.5</td><td>4.0</td></bkg<>	-	-	-	3.5	4.0	
38	<bkg< td=""><td><bkg< td=""><td>0.766</td><td>1.71</td><td>ND</td><td>4.5</td><td>5.0</td></bkg<></td></bkg<>	<bkg< td=""><td>0.766</td><td>1.71</td><td>ND</td><td>4.5</td><td>5.0</td></bkg<>	0.766	1.71	ND	4.5	5.0	
39	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>5.0</td><td>5.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>5.0</td><td>5.0</td></bkg<>	-	-	-	5.0	5.0	
40	1.7	<bkg< td=""><td>ND</td><td>ND</td><td>-</td><td>3.5</td><td>4.0</td></bkg<>	ND	ND	-	3.5	4.0	
41	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>4.5</td><td>4.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>4.5</td><td>4.0</td></bkg<>	-	-	-	4.5	4.0	
42	<bkg< td=""><td><bkg< td=""><td>ND</td><td>ND</td><td>-</td><td>6.5</td><td>6.5</td></bkg<></td></bkg<>	<bkg< td=""><td>ND</td><td>ND</td><td>-</td><td>6.5</td><td>6.5</td></bkg<>	ND	ND	-	6.5	6.5	
43	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>6.0</td><td>6.5</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>6.0</td><td>6.5</td></bkg<>	-	-	-	6.0	6.5	
44	<bkg< td=""><td><bkg< td=""><td>1.07</td><td>3.83</td><td>ND</td><td>6.5</td><td>7.0</td></bkg<></td></bkg<>	<bkg< td=""><td>1.07</td><td>3.83</td><td>ND</td><td>6.5</td><td>7.0</td></bkg<>	1.07	3.83	ND	6.5	7.0	
45	1.7	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>7.0</td><td>6.5</td></bkg<>	-	-	-	7.0	6.5	
46	<bkg< td=""><td><bkg< td=""><td>ND</td><td>ND</td><td>-</td><td>6.0</td><td>6.0</td></bkg<></td></bkg<>	<bkg< td=""><td>ND</td><td>ND</td><td>-</td><td>6.0</td><td>6.0</td></bkg<>	ND	ND	-	6.0	6.0	
47	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>7.5</td><td>7.5</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>7.5</td><td>7.5</td></bkg<>	-	-	-	7.5	7.5	
48	10.1	682.0	-	-	-	10.0	10.5	
49	1.7	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>6.5</td><td>6.5</td></bkg<>	-	-	-	6.5	6.5	
50	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>7.0</td><td>7.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>7.0</td><td>7.0</td></bkg<>	-	-	-	7.0	7.0	
51	<bkg< td=""><td>700.9</td><td>-</td><td>-</td><td>-</td><td>11.0</td><td>11.5</td></bkg<>	700.9	-	-	-	11.0	11.5	
52	1.7	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>7.0</td><td>7.0</td></bkg<>	-	-	-	7.0	7.0	
53	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>6.5</td><td>6.5</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>6.5</td><td>6.5</td></bkg<>	-	-	-	6.5	6.5	
54	1.7	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>7.0</td><td>6.5</td></bkg<>	-	-	-	7.0	6.5	
55	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>5.5</td><td>5.5</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>5.5</td><td>5.5</td></bkg<>	-	-	-	5.5	5.5	
56	10.1	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>8.5</td><td>8.0</td></bkg<>	-	-	-	8.5	8.0	
57	<bkg< td=""><td><bkg< td=""><td>ND</td><td>0.769</td><td>-</td><td>6.0</td><td>6.0</td></bkg<></td></bkg<>	<bkg< td=""><td>ND</td><td>0.769</td><td>-</td><td>6.0</td><td>6.0</td></bkg<>	ND	0.769	-	6.0	6.0	
58	1.7	175.4	-	-	-	10.5	10.5	
59	5.9	<bkg< td=""><td>ND</td><td>ND</td><td>-</td><td>7.0</td><td>7.5</td></bkg<>	ND	ND	-	7.0	7.5	
60	1.7	<bkg< td=""><td></td><td>-</td><td>-</td><td>9.5</td><td>9.5</td></bkg<>		-	-	9.5	9.5	
Location /	Area : Su	rvey Uni	t 3 (Build	lings 404 ar	nd 413)			
61	<bkg< td=""><td><bkg< td=""><td>ND</td><td>0.894</td><td>ND</td><td>6.0</td><td>6.0</td></bkg<></td></bkg<>	<bkg< td=""><td>ND</td><td>0.894</td><td>ND</td><td>6.0</td><td>6.0</td></bkg<>	ND	0.894	ND	6.0	6.0	
62	0.0	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>7.0</td><td>7.0</td></bkg<>	-	-	-	7.0	7.0	
63	0.0	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>8.0</td><td>8.0</td></bkg<>	-	-	-	8.0	8.0	
64	<bkg< td=""><td><bkg< td=""><td>-</td><td>ı</td><td>-</td><td>9.0</td><td>8.5</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>ı</td><td>-</td><td>9.0</td><td>8.5</td></bkg<>	-	ı	-	9.0	8.5	
65	0.0	951.2	-	-	-	11.0	10.5	
66	<bkg< td=""><td><bkg< td=""><td>ND</td><td>ND</td><td>-</td><td>9.5</td><td>9.0</td></bkg<></td></bkg<>	<bkg< td=""><td>ND</td><td>ND</td><td>-</td><td>9.5</td><td>9.0</td></bkg<>	ND	ND	-	9.5	9.0	
67	<bkg< td=""><td>108.1</td><td>-</td><td>-</td><td>-</td><td>11.0</td><td>11.5</td></bkg<>	108.1	-	-	-	11.0	11.5	
68	<bkg< td=""><td><bkg< td=""><td>ND</td><td>0.892</td><td>-</td><td>8.0</td><td>8.5</td></bkg<></td></bkg<>	<bkg< td=""><td>ND</td><td>0.892</td><td>-</td><td>8.0</td><td>8.5</td></bkg<>	ND	0.892	-	8.0	8.5	

15

Survey Cocation Common Common				Contami	nation		Exposure Rate			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Direct Field		Re	emovable /	Smear	Surface Contact	One meter Above Surface		
Color		(dpm cn	/ 100 n ²)	La	ab (dpm /10	0 cm²)	(uR/hr)	(uR/hr)		
70 4.2 <8KG - - - 9.0 9.0 71 <8KG <8KG - - 9.0 9.5 72 0.0 <8KG ND 1.17 - 6.5 6.0 73 <8KG 40.1 ND 3.93 - 6.5 7.0 74 0.0 62.8 - - - 7.5 8.0 75 <8KG 2.3 - - - 11.5 11.0 76 <8KG 81.7 - - - 10.0 10.5 78 8.4 <8KG - - - 9.0 9.5 79 <8KG - - 8.0 8.0 8.0 80 0.0 74.1 - - 12.5 13.0 81 0.0 2.3 - - 7.5 7.5 7.5 82 <8KG 96.8				α	β	Tritium	(((((((((((((((((((((1)		
71 <bkg< td=""> <bkg< td=""> - - 9.0 9.5 72 0.0 <bkg< td=""> ND 1.17 - 6.5 6.0 73 <bkg< td=""> 40.1 ND 3.93 - 6.5 7.0 74 0.0 62.8 - - - 7.5 8.0 75 <bkg< td=""> 2.3 - - - 7.0 7.5 8.0 76 <bkg< td=""> 81.7 - - - 10.0 10.5 7.5 77 0.0 <bkg< td=""> - - - 10.0 10.5 7.5 78 8.4 <bkg< td=""> - - - 9.0 9.5 9.5 79 <bkg< td=""> - - - 9.0 9.5 9.5 9.0 9.5 9.5 9.0 9.5 9.5 9.5 9.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5</bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<>	69	<bkg< td=""><td>981.5</td><td>ND</td><td>0.86</td><td>-</td><td>10.5</td><td>10.5</td></bkg<>	981.5	ND	0.86	-	10.5	10.5		
72 0.0 <bkg< td=""> ND 1.17 - 6.5 6.0 73 <bkg< td=""> 40.1 ND 3.93 - 6.5 7.0 74 0.0 62.8 - - - 7.5 8.0 75 <bkg< td=""> 2.3 - - - 11.5 11.0 76 <bkg< td=""> 2.3 - - - 7.0 7.5 77 0.0 <bkg< td=""> - - - 10.0 10.5 78 8.4 <bkg< td=""> - - - 9.0 9.5 79 <bkg< td=""> - - - 8.0 8.0 80 0.0 74.1 - - - 8.0 8.0 81 0.0 2.3 - - - 7.5 7.5 82 <bkg< td=""> 96.8 - - - 10.0 10.0 84</bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<>	70	4.2	<bkg< td=""><td>-</td><td>1</td><td>-</td><td>9.0</td><td>9.0</td></bkg<>	-	1	-	9.0	9.0		
73 <bkg< td=""> 40.1 ND 3.93 - 6.5 7.0 74 0.0 62.8 - - - 7.5 8.0 75 <bkg< td=""> 2.3 - - - 11.5 11.0 76 <bkg< td=""> 81.7 - - - 7.0 7.5 77 0.0 <bkg< td=""> - - - 10.0 10.5 78 8.4 <bkg< td=""> - - - 9.0 9.5 79 <bkg< td=""> SBKG - - - 9.0 9.5 80 0.0 74.1 - - - 12.5 13.0 81 0.0 2.3 - - - 12.5 13.0 81 0.0 2.3 - - - 10.0 10.0 81 0.0 2.8 - - - 10.0 10.0 83</bkg<></bkg<></bkg<></bkg<></bkg<></bkg<>	71	<bkg< td=""><td><bkg< td=""><td>-</td><td>1</td><td>-</td><td>9.0</td><td>9.5</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>1</td><td>-</td><td>9.0</td><td>9.5</td></bkg<>	-	1	-	9.0	9.5		
74 0.0 62.8 - - - 7.5 8.0 75 <8KG	72	0.0	<bkg< td=""><td>ND</td><td>1.17</td><td>-</td><td>6.5</td><td>6.0</td></bkg<>	ND	1.17	-	6.5	6.0		
75 <bkg< td=""> 2.3 - - - 11.5 11.0 76 <bkg< td=""> 81.7 - - 7.0 7.5 77 0.0 <bkg< td=""> - - - 10.0 10.5 78 8.4 <bkg< td=""> - - - 9.0 9.5 79 <bkg< td=""> <bkg< td=""> - - - 8.0 8.0 80 0.0 74.1 - - - 8.0 8.0 81 0.0 2.3 - - - 12.5 13.0 81 0.0 2.3 - - - 7.5 7.5 7.5 82 <bkg< td=""> 96.8 - - - 10.0 10.0 10.0 83 <bkg< td=""> 6.0 ND ND ND ND 6.5 7.0 84 0.0 <bkg< td=""> ND ND ND 10.0 10.5</bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<>	73	<bkg< td=""><td>40.1</td><td>ND</td><td>3.93</td><td>-</td><td>6.5</td><td>7.0</td></bkg<>	40.1	ND	3.93	-	6.5	7.0		
76 <bkg< td=""> 81.7 - - - 7.0 7.5 77 0.0 <bkg< td=""> - - - 10.0 10.5 78 8.4 <bkg< td=""> - - - 9.0 9.5 79 <bkg< td=""> <bkg< td=""> - - - 8.0 8.0 80 0.0 74.1 - - - 12.5 13.0 81 0.0 2.3 - - - 7.5 7.5 82 <br <="" td=""/><td>74</td><td>0.0</td><td>62.8</td><td>-</td><td>-</td><td>-</td><td>7.5</td><td>8.0</td></bkg<></bkg<></bkg<></bkg<></bkg<>	74	0.0	62.8	-	-	-	7.5	8.0		
77 0.0 <8KG	75	<bkg< td=""><td>2.3</td><td>-</td><td>-</td><td>-</td><td>11.5</td><td>11.0</td></bkg<>	2.3	-	-	-	11.5	11.0		
78 8.4 <bkg< td=""> - - - 9.0 9.5 79 <bkg< td=""> <bkg< td=""> - - - 8.0 8.0 80 0.0 74.1 - - - 12.5 13.0 81 0.0 2.3 - - - 7.5 7.5 82 <bkg< td=""> 96.8 - - - 10.0 10.0 83 <bkg< td=""> 6.0 ND ND ND 6.5 7.0 84 0.0 <bkg< td=""> ND 0.775 - 7.5 7.5 85 4.2 <bkg< td=""> - - - 7.0 7.7 86 0.0 62.8 ND ND ND 10.0 10.5 87 4.2 168.6 - - - 10.5 11.0 88 <bkg< td=""> <bkg< td=""> ND ND - 5.0 5.5 89</bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<>	76	<bkg< td=""><td>81.7</td><td>-</td><td>-</td><td>-</td><td>7.0</td><td>7.5</td></bkg<>	81.7	-	-	-	7.0	7.5		
79 <bkg< td=""> <bkg< td=""> - - - 8.0 8.0 80 0.0 74.1 - - - 12.5 13.0 81 0.0 2.3 - - - 7.5 7.5 82 <bkg< td=""> 96.8 - - - 10.0 10.0 83 <bkg< td=""> 6.0 ND ND ND 6.5 7.0 84 0.0 <bkg< td=""> ND 0.775 - 7.5 7.5 85 4.2 <bkg< td=""> - - - 7.0 7.7 86 0.0 62.8 ND ND ND 10.0 10.5 87 4.2 168.6 - - - 10.5 11.0 88 <bkg< td=""> <bkg< td=""> ND ND - 5.0 5.5 89 4.2 425.7 0.619 2.64 - 10.0 10.5 <t< td=""><td>77</td><td>0.0</td><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>10.0</td><td>10.5</td></bkg<></td></t<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<>	77	0.0	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>10.0</td><td>10.5</td></bkg<>	-	-	-	10.0	10.5		
80 0.0 74.1 - - - 7.5 7.5 81 0.0 2.3 - - - 7.5 7.5 82 <8KG	78	8.4	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>9.0</td><td>9.5</td></bkg<>	-	-	-	9.0	9.5		
81 0.0 2.3 - - - 7.5 7.5 82 <8KG	79	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>8.0</td><td>8.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>8.0</td><td>8.0</td></bkg<>	-	-	-	8.0	8.0		
81 0.0 2.3 - - - 7.5 7.5 82 	80	0.0	74.1	-	-	-	12.5	13.0		
83 <bkg< td=""> 6.0 ND ND ND 6.5 7.0 84 0.0 <bkg< td=""> ND 0.775 - 7.5 7.5 85 4.2 <bkg< td=""> - - - 7.0 7.7 86 0.0 62.8 ND ND ND 10.0 10.5 87 4.2 168.6 - - - 10.5 11.0 88 <bkg< td=""> <bkg< td=""> ND ND - 5.0 5.5 89 4.2 425.7 0.619 2.64 - 10.0 10.5 90 16.8 172.4 - - - 9.5 10.0 151 <bkg< td=""> <bkg< td=""> 5.44 8.82 ND 5.0 5.5 152 0.0 <bkg< td=""> 4.59 7.07 ND 5.5 5.5 Location / Area : Survey Unit 4 (Building 273) 91 0.4 <bkg< td=""> ND<td>81</td><td>0.0</td><td>2.3</td><td>-</td><td>-</td><td>-</td><td>7.5</td><td>7.5</td></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<>	81	0.0	2.3	-	-	-	7.5	7.5		
84 0.0 <bkg< td=""> ND 0.775 - 7.5 7.5 85 4.2 <bkg< td=""> - - - 7.0 7.7 86 0.0 62.8 ND ND ND 10.0 10.5 87 4.2 168.6 - - - 10.5 11.0 88 <bkg< td=""> <bkg< td=""> ND ND - 5.0 5.5 89 4.2 425.7 0.619 2.64 - 10.0 10.5 90 16.8 172.4 - - - 9.5 10.0 151 <bkg< td=""> <bkg< td=""> 5.44 8.82 ND 5.0 5.5 152 0.0 <bkg< td=""> 5.44 8.82 ND 5.5 5.5 Location / Area : Survey Unit 4 (Building 273) 91 0.4 <bkg< td=""> - - - 4.5 5.0 92 <bkg< td=""> <bkg< td=""> ND</bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<>	82	<bkg< td=""><td>96.8</td><td>-</td><td>-</td><td>-</td><td>10.0</td><td>10.0</td></bkg<>	96.8	-	-	-	10.0	10.0		
85 4.2 <bkg< td=""> - - 7.0 7.7 86 0.0 62.8 ND ND ND 10.0 10.5 87 4.2 168.6 - - - 10.5 11.0 88 <bkg< td=""> <bkg< td=""> ND ND - 5.0 5.5 89 4.2 425.7 0.619 2.64 - 10.0 10.5 90 16.8 172.4 - - - 9.5 10.0 151 <bkg< td=""> <bkg< td=""> 5.44 8.82 ND 5.0 5.5 152 0.0 <bkg< td=""> 5.44 8.82 ND 5.0 5.5 152 0.0 <bkg< td=""> 4.59 7.07 ND 5.5 5.5 Location / Area: Survey Unit 4 (Building 273) 91 0.4 <bkg< td=""> - - - 4.5 5.0 92 <bkg< td=""> <bkg< td=""> 0.682 2.</bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<>	83	<bkg< td=""><td>6.0</td><td>ND</td><td>ND</td><td>ND</td><td>6.5</td><td>7.0</td></bkg<>	6.0	ND	ND	ND	6.5	7.0		
85 4.2 <bkg< td=""> - - 7.0 7.7 86 0.0 62.8 ND ND ND 10.0 10.5 87 4.2 168.6 - - - 10.5 11.0 88 <bkg< td=""> <bkg< td=""> ND ND - 5.0 5.5 89 4.2 425.7 0.619 2.64 - 10.0 10.5 90 16.8 172.4 - - - 9.5 10.0 151 <bkg< td=""> <bkg< td=""> 5.44 8.82 ND 5.0 5.5 152 0.0 <bkg< td=""> 5.44 8.82 ND 5.0 5.5 152 0.0 <bkg< td=""> 4.59 7.07 ND 5.5 5.5 Location / Area: Survey Unit 4 (Building 273) 91 0.4 <bkg< td=""> - - - 4.5 5.0 92 <bkg< td=""> <bkg< td=""> 0.682 2.</bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<>	84	0.0	<bkg< td=""><td>ND</td><td>0.775</td><td>-</td><td>7.5</td><td>7.5</td></bkg<>	ND	0.775	-	7.5	7.5		
86 0.0 62.8 ND ND ND 10.0 10.5 87 4.2 168.6 - - - 10.5 11.0 88 <bkg< td=""> <bkg< td=""> ND ND - 5.0 5.5 89 4.2 425.7 0.619 2.64 - 10.0 10.5 90 16.8 172.4 - - - 9.5 10.0 151 <bkg< td=""> <bkg< td=""> 5.44 8.82 ND 5.0 5.5 152 0.0 <bkg< td=""> 5.44 8.82 ND 5.0 5.5 152 0.0 <bkg< td=""> 4.59 7.07 ND 5.5 5.5 Location / Area : Survey Unit 4 (Building 273) 91 0.4 <bkg< td=""> - - - 4.5 5.0 92 <bkg< td=""> <bkg< td=""> 0.682 2.15 ND 4.5 5.0 93 <bkg< td=""> <bkg< td=""> ND ND</bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<>	85	4.2		-	-	-	7.0	7.7		
88 <bkg< td=""> <bkg< td=""> ND ND - 5.0 5.5 89 4.2 425.7 0.619 2.64 - 10.0 10.5 90 16.8 172.4 - - - 9.5 10.0 151 <bkg< td=""> <bkg< td=""> 5.44 8.82 ND 5.0 5.5 152 0.0 <bkg< td=""> 4.59 7.07 ND 5.5 5.5 Location / Area : Survey Unit 4 (Building 273) 91 0.4 <bkg< td=""> - - - 4.5 5.0 92 <bkg< td=""> <bkg< td=""> 0.682 2.15 ND 4.5 5.0 93 <bkg< td=""> <bkg< td=""> ND ND ND 4.5 5.0 94 <bkg< td=""> <bkg< td=""> - - - 5.0 5.0 95 <bkg< td=""> <bkg< td=""> 0.796 1.88 - 5.0 5.0 96 <bkg< td=""> <bkg< td=""> <td< td=""><td>86</td><td>0.0</td><td>62.8</td><td>ND</td><td>ND</td><td>ND</td><td>10.0</td><td>10.5</td></td<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<>	86	0.0	62.8	ND	ND	ND	10.0	10.5		
88 <bkg< td=""> <bkg< td=""> ND ND - 5.0 5.5 89 4.2 425.7 0.619 2.64 - 10.0 10.5 90 16.8 172.4 - - - 9.5 10.0 151 <bkg< td=""> <bkg< td=""> 5.44 8.82 ND 5.0 5.5 152 0.0 <bkg< td=""> 4.59 7.07 ND 5.5 5.5 Location / Area : Survey Unit 4 (Building 273) 91 0.4 <bkg< td=""> - - - 4.5 5.0 92 <bkg< td=""> <bkg< td=""> 0.682 2.15 ND 4.5 5.0 93 <bkg< td=""> <bkg< td=""> ND ND ND 4.5 5.0 94 <bkg< td=""> <bkg< td=""> - - - 5.0 5.0 95 <bkg< td=""> <bkg< td=""> 0.796 1.88 - 5.0 5.0 96 <bkg< td=""> <bkg< td=""> <td< td=""><td>87</td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td></td<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<>	87			-		-				
89 4.2 425.7 0.619 2.64 - 10.0 10.5 90 16.8 172.4 - - - 9.5 10.0 151 <bkg< td=""> <bkg< td=""> 5.44 8.82 ND 5.0 5.5 152 0.0 <bkg< td=""> 4.59 7.07 ND 5.5 5.5 Location / Area : Survey Unit 4 (Building 273) 91 0.4 <bkg< td=""> - - - 4.5 5.0 92 <bkg< td=""> <bkg< td=""> 0.682 2.15 ND 4.5 5.0 93 <bkg< td=""> <bkg< td=""> ND ND ND 4.5 5.0 94 <bkg< td=""> <bkg< td=""> - - - 5.0 5.0 95 <bkg< td=""> <bkg< td=""> 0.796 1.88 - 5.0 5.0 96 <bkg< td=""> <bkg< td=""> - - - 6.0 6.0 97 0.4 <bkg< td=""> -<</bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<>				ND	ND	-				
90 16.8 172.4 - - - 9.5 10.0 151 <bkg< td=""> <bkg< td=""> 5.44 8.82 ND 5.0 5.5 152 0.0 <bkg< td=""> 4.59 7.07 ND 5.5 5.5 Location / Area : Survey Unit 4 (Building 273) 91 0.4 <bkg< td=""> - - - 4.5 5.0 92 <bkg< td=""> <bkg< td=""> 0.682 2.15 ND 4.5 5.0 93 <bkg< td=""> <bkg< td=""> ND ND ND 4.5 5.0 94 <bkg< td=""> <bkg< td=""> - - - 5.0 5.0 95 <bkg< td=""> <bkg< td=""> 0.796 1.88 - 5.0 5.0 96 <bkg< td=""> <bkg< td=""> - - - 6.0 6.0 97 0.4 <bkg< td=""> - - - 6.0 6.0</bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<>	89			0.619	2.64	-	10.0			
151 <bkg< td=""> <bkg< td=""> 5.44 8.82 ND 5.0 5.5 152 0.0 <bkg< td=""> 4.59 7.07 ND 5.5 5.5 Location / Area : Survey Unit 4 (Building 273) 91 0.4 <bkg< td=""> - - - 4.5 5.0 92 <bkg< td=""> <bkg< td=""> 0.682 2.15 ND 4.5 5.0 93 <bkg< td=""> <bkg< td=""> ND ND ND 4.5 5.0 94 <bkg< td=""> <bkg< td=""> - - - 5.0 5.0 95 <bkg< td=""> <bkg< td=""> 0.796 1.88 - 5.0 5.0 96 <bkg< td=""> <bkg< td=""> - - - 6.0 6.0 97 0.4 <bkg< td=""> - - - 6.0 6.0</bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<>				-	-	-				
152 0.0 <bkg< th=""> 4.59 7.07 ND 5.5 5.5 Location / Area : Survey Unit 4 (Building 273) Survey Unit 4 (Building 273) Survey Unit 4 (Building 273) 91 0.4 <bkg< td=""> - - 4.5 5.0 92 <bkg< td=""> <bkg< td=""> 0.682 2.15 ND 4.5 5.0 93 <bkg< td=""> <bkg< td=""> ND ND ND 4.5 5.0 94 <bkg< td=""> <bkg< td=""> - - - 5.0 5.0 95 <bkg< td=""> <bkg< td=""> 0.796 1.88 - 5.0 5.0 96 <bkg< td=""> <bkg< td=""> - - - 6.0 6.0 97 0.4 <bkg< td=""> - - - 6.0 6.0</bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<>				5.44	8.82	ND				
Location / Area : Survey Unit 4 (Building 273) 91 0.4 <bkg< td=""> - - - 4.5 5.0 92 <bkg< td=""> <bkg< td=""> 0.682 2.15 ND 4.5 5.0 93 <bkg< td=""> <bkg< td=""> ND ND ND 4.5 5.0 94 <bkg< td=""> <bkg< td=""> - - - 5.0 5.0 95 <bkg< td=""> <bkg< td=""> 0.796 1.88 - 5.0 5.0 96 <bkg< td=""> <bkg< td=""> - - - 6.0 6.0 97 0.4 <bkg< td=""> - - - 6.0 6.0</bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<>										
91 0.4 <bkg< td=""> - - - 4.5 5.0 92 <bkg< td=""> <bkg< td=""> 0.682 2.15 ND 4.5 5.0 93 <bkg< td=""> <bkg< td=""> ND ND ND 4.5 5.0 94 <bkg< td=""> <bkg< td=""> - - - 5.0 5.0 95 <bkg< td=""> <bkg< td=""> 0.796 1.88 - 5.0 5.0 96 <bkg< td=""> <bkg< td=""> - - - 6.0 6.0 97 0.4 <bkg< td=""> - - - 6.0 6.0</bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<>		ı	l .							
92 <bkg< td=""> <bkg< td=""> 0.682 2.15 ND 4.5 5.0 93 <bkg< td=""> <bkg< td=""> ND ND ND 4.5 5.0 94 <bkg< td=""> <bkg< td=""> - - - 5.0 5.0 95 <bkg< td=""> <bkg< td=""> 0.796 1.88 - 5.0 5.0 96 <bkg< td=""> <bkg< td=""> - - 6.0 6.0 97 0.4 <bkg< td=""> - - - 6.0 6.0</bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<>			_			-	4.5	5.0		
93 <bkg< td=""> <bkg< td=""> ND ND ND 4.5 5.0 94 <bkg< td=""> <bkg< td=""> - - - 5.0 5.0 95 <bkg< td=""> <bkg< td=""> 0.796 1.88 - 5.0 5.0 96 <bkg< td=""> <bkg< td=""> - - 6.0 6.0 97 0.4 <bkg< td=""> - - - 6.0 6.0</bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<>				0.682		ND				
94 <bkg< td=""> <bkg< td=""> - - - 5.0 5.0 95 <bkg< td=""> <bkg< td=""> 0.796 1.88 - 5.0 5.0 96 <bkg< td=""> <bkg< td=""> - - 6.0 6.0 97 0.4 <bkg< td=""> - - 6.0 6.0</bkg<></bkg<></bkg<></bkg<></bkg<></bkg<></bkg<>										
95 <bkg< td=""> <bkg< td=""> 0.796 1.88 - 5.0 5.0 96 <bkg< td=""> <bkg< td=""> - - - 6.0 6.0 97 0.4 <bkg< td=""> - - - 6.0 6.0</bkg<></bkg<></bkg<></bkg<></bkg<>										
96 <bkg< td=""> - - - 6.0 6.0 97 0.4 <bkg< td=""> - - - 6.0 6.0</bkg<></bkg<>		 								
97 0.4 <bkg 6.0="" 6.0<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></bkg>										
ל./ ו - ו - ן - ן טאסאן טאסאן סכ	98	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>7.5</td><td>7.5</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>7.5</td><td>7.5</td></bkg<>	-	-	-	7.5	7.5		
99 0.4 <bkg 0.66="" 0.935="" 5.0="" 5.0<="" nd="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></bkg>										
100										
101										
102										

16

			Contami	nation		Exposure Rate			
Survey Location	Direct Field		Re	emovable /	Smear	Surface Contact	One meter Above Surface		
Number	(dpm cn	/ 100 n²)	Lab (dpm /100 cm ²)			(μR/hr)	(µR/hr)		
	α	β	α	β	Tritium	,	. ,		
103	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>5.0</td><td>5.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>5.0</td><td>5.0</td></bkg<>	-	-	-	5.0	5.0		
104	<bkg< td=""><td><bkg< td=""><td>ND</td><td>ND</td><td>ND</td><td>5.5</td><td>5.5</td></bkg<></td></bkg<>	<bkg< td=""><td>ND</td><td>ND</td><td>ND</td><td>5.5</td><td>5.5</td></bkg<>	ND	ND	ND	5.5	5.5		
105	0.4	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>8.5</td><td>9.0</td></bkg<>	-	-	-	8.5	9.0		
106	<bkg< td=""><td>90.4</td><td>-</td><td>-</td><td>-</td><td>12.5</td><td>13.0</td></bkg<>	90.4	-	-	-	12.5	13.0		
107	0.4	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>8.0</td><td>8.0</td></bkg<>	-	-	-	8.0	8.0		
108	<bkg< td=""><td>823.8</td><td>-</td><td>-</td><td>-</td><td>18.0</td><td>18.0</td></bkg<>	823.8	-	-	-	18.0	18.0		
109	0.4	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>10.0</td><td>10.5</td></bkg<>	-	-	-	10.0	10.5		
110	0.4	<bkg< td=""><td>-</td><td>1</td><td>-</td><td>9.0</td><td>8.5</td></bkg<>	-	1	-	9.0	8.5		
111	<bkg< td=""><td><bkg< td=""><td>0.579</td><td>0.781</td><td>-</td><td>8.0</td><td>8.0</td></bkg<></td></bkg<>	<bkg< td=""><td>0.579</td><td>0.781</td><td>-</td><td>8.0</td><td>8.0</td></bkg<>	0.579	0.781	-	8.0	8.0		
112	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>8.0</td><td>8.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>8.0</td><td>8.0</td></bkg<>	-	-	-	8.0	8.0		
113	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>12.0</td><td>12.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>12.0</td><td>12.0</td></bkg<>	-	-	-	12.0	12.0		
114	0.4	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>10.5</td><td>11.0</td></bkg<>	-	-	-	10.5	11.0		
115	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>8.5</td><td>9.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>8.5</td><td>9.0</td></bkg<>	-	-	-	8.5	9.0		
116	4.6	687.7	-	-	-	14.0	14.5		
117	0.4	990.2	-	-	-	16.5	16.5		
118	<bkg< td=""><td>846.5</td><td>-</td><td>-</td><td>-</td><td>14.5</td><td>14.5</td></bkg<>	846.5	-	-	-	14.5	14.5		
119	<bkg< td=""><td><bkg< td=""><td>0.644</td><td>1.9</td><td>ND</td><td>7.5</td><td>8.0</td></bkg<></td></bkg<>	<bkg< td=""><td>0.644</td><td>1.9</td><td>ND</td><td>7.5</td><td>8.0</td></bkg<>	0.644	1.9	ND	7.5	8.0		
120	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>8.5</td><td>8.5</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>8.5</td><td>8.5</td></bkg<>	-	-	-	8.5	8.5		
153	<bkg< td=""><td>64.5</td><td>ND</td><td>ND</td><td>ND</td><td>9.0</td><td>9.0</td></bkg<>	64.5	ND	ND	ND	9.0	9.0		
154	4.5	532.4	0.439	ND	-	14.0	14.5		
155	22.3	465.1	0.65	1.93	-	10.5	10.5		
156	4.5	501.8	-	-	-	14.0	14.0		
Location /	Area : Su	rvey Uni	t 5 (Build	ling 274 and	d 285)				
121	<bkg< td=""><td><bkg< td=""><td>ND</td><td>ND</td><td>-</td><td>5.0</td><td>5.0</td></bkg<></td></bkg<>	<bkg< td=""><td>ND</td><td>ND</td><td>-</td><td>5.0</td><td>5.0</td></bkg<>	ND	ND	-	5.0	5.0		
122	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>4.0</td><td>4.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>4.0</td><td>4.0</td></bkg<>	-	-	-	4.0	4.0		
123	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>6.0</td><td>6.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>6.0</td><td>6.0</td></bkg<>	-	-	-	6.0	6.0		
124	<bkg< td=""><td>0.8</td><td>-</td><td>-</td><td>-</td><td>4.5</td><td>4.5</td></bkg<>	0.8	-	-	-	4.5	4.5		
125	5.5	<bkg< td=""><td>ND</td><td>0.591</td><td>ND</td><td>5.0</td><td>5.5</td></bkg<>	ND	0.591	ND	5.0	5.5		
126	<bkg< td=""><td>15.9</td><td>ND</td><td>ND</td><td>-</td><td>5.0</td><td>5.0</td></bkg<>	15.9	ND	ND	-	5.0	5.0		
127	<bkg< td=""><td>700.2</td><td>-</td><td>-</td><td>-</td><td>8.5</td><td>9.0</td></bkg<>	700.2	-	-	-	8.5	9.0		
128	13.9	828.7	0.771	ND	-	12.0	11.5		
129	5.5	<bkg< td=""><td>ND</td><td>ND</td><td>-</td><td>5.0</td><td>5.0</td></bkg<>	ND	ND	-	5.0	5.0		
130	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>6.5</td><td>7.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>6.5</td><td>7.0</td></bkg<>	-	-	-	6.5	7.0		
131	<bkg< td=""><td>34.8</td><td>-</td><td>-</td><td>-</td><td>7.0</td><td>7.0</td></bkg<>	34.8	-	-	-	7.0	7.0		
132	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>6.5</td><td>7.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>6.5</td><td>7.0</td></bkg<>	-	-	-	6.5	7.0		
133	<bkg< td=""><td>31.0</td><td>-</td><td>-</td><td>-</td><td>7.0</td><td>6.5</td></bkg<>	31.0	-	-	-	7.0	6.5		
134	13.9	957.3	ND	ND	-	11.5	11.5		

			Contami	nation	Exposure Rate			
Survey Location	Direct	Field	Re	emovable /	Smear	Surface Contact	One meter Above Surface	
Number	(dpm / 100 cm ²)		Lab (dpm /100 cm ²)			(μR/hr)	(µR/hr)	
	α	β	α	β	Tritium	()/	(/	
135	<bkg< td=""><td>919.5</td><td>0.664</td><td>0.96</td><td>ND</td><td>10.0</td><td>9.5</td></bkg<>	919.5	0.664	0.96	ND	10.0	9.5	
136	1.3	91.5	-	1	-	8.0	8.5	
137	<bkg< td=""><td>983.7</td><td>-</td><td>1</td><td>-</td><td>9.5</td><td>9.5</td></bkg<>	983.7	-	1	-	9.5	9.5	
138	<bkg< td=""><td><bkg< td=""><td>-</td><td>1</td><td>-</td><td>8.0</td><td>8.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>1</td><td>-</td><td>8.0</td><td>8.0</td></bkg<>	-	1	-	8.0	8.0	
139	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>6.5</td><td>7.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>6.5</td><td>7.0</td></bkg<>	-	-	-	6.5	7.0	
140	<bkg< td=""><td>152.0</td><td>ND</td><td>ND</td><td>-</td><td>7.5</td><td>7.5</td></bkg<>	152.0	ND	ND	-	7.5	7.5	
141	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>7.5</td><td>7.5</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>7.5</td><td>7.5</td></bkg<>	-	-	-	7.5	7.5	
142	<bkg< td=""><td>31.0</td><td>-</td><td>-</td><td>-</td><td>7.0</td><td>7.0</td></bkg<>	31.0	-	-	-	7.0	7.0	
143	<bkg< td=""><td><bkg< td=""><td>-</td><td>-</td><td>-</td><td>7.0</td><td>7.0</td></bkg<></td></bkg<>	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>7.0</td><td>7.0</td></bkg<>	-	-	-	7.0	7.0	
144	9.7	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>7.0</td><td>7.0</td></bkg<>	-	-	-	7.0	7.0	
145	9.7	998.9	-	-	-	5.5	6.0	
146	<bkg< td=""><td>870.3</td><td>0.508</td><td>ND</td><td>ND</td><td>10.0</td><td>10.0</td></bkg<>	870.3	0.508	ND	ND	10.0	10.0	
147	1.3	12.1	ND	ND	-	6.5	6.5	
148	13.9	<bkg< td=""><td>-</td><td>-</td><td>-</td><td>5.0</td><td>5.5</td></bkg<>	-	-	-	5.0	5.5	
149	5.5	46.1	-	-	-	7.5	7.5	
150	<bkg< td=""><td>121.7</td><td>ND</td><td>ND</td><td>-</td><td>6.5</td><td>6.5</td></bkg<>	121.7	ND	ND	-	6.5	6.5	

Notes:

ND - Analyte was analyzed for, but not detected above the laboratory detection limit. Detection limit is lower than the site assessment criteria shown in Table 4-2. Laboratory data package is provided in Appendix J.

dpm – disintegrations per minute, cm² – square centimeters, µR – micro-Roentgen, hr - hour

<BKG - Results less than site-specific background levels.

Site-specific Background Measurements									
Location/Area	α (dpm / 100 cm ²)	$\alpha (dpm / 100 cm^2) \beta (dpm / 100 cm^2)$							
Survey Unit 1	4.6	744.4	6.0						
Survey Unit 2	6.7	688.6	8.2						
Survey Unit 3	8.4	719.8	7.7						
Survey Unit 4	8.0	756.5	9.5						
Survey Unit 5	7.1	649.5	8.0						

The data in Table 4-1 was compared the site assessment criteria which was extracted from Reg Guide 1.86 Table-I. The Reg Guide 1.86 Table-I criteria are summarized in Table 4-2 and for this survey; all measurements were below this established criteria.

Table 4-2 Site Assessment Criteria

	Direct Measurements	Removable / Smear Measurements	Ambient Exposure Rates
Alpha (dpm/100 cm ²)	100	20	-
Beta (dpm/100 cm ²)	1000	200	-
Tritium (dpm/100 cm ²)	5000	1000	-
Gamma (μR/hr)	-	-	> 2 x Average Background

Note: Alpha, beta, and tritium values extracted from NRC Regulatory Guide 1.86 Table-I

dpm - disintegrations per minute

cm² – square centimeters

μR/hr – micro-Roentgen per hour

4.2 FIELD INVESTIGATION RESULTS

4.2.1 Site Interviews / Visual Inspection

The team conducted a visual inspection of the Site that resulted in no areas identified as suspect, or requiring additional investigation. The visual inspections and interviews verified that there were no radioactive commodities presently on-site. The result of the visual inspection is documented in Appendix B, "Visual Inspection / Site Survey Checklist".

In addition to the visual inspection, the Team Lead conducted an interview with on-site POC. The results of this interview are recorded in the Survey Approach Documentation Form provided in Appendix C. The interview resulted in no specific areas requiring additional survey or investigation.

4.2.2 Field Measurements

All field measurements obtained by the survey team are included in Appendix E of this report. Following data was recorded:

- Total (fixed and removable) alpha (cpm and dpm/100 cm²)
- Total (fixed and removable) beta (cpm and dpm/100 cm²)
- Removable / Smear (cpm/100 cm² and dpm/100 cm²)
 - Note: This was a qualitative measurement performed and used by field personnel that is superseded by analytical data received by GEL Laboratories.
- Removable Large Area Wipes (cpm)
- Area gamma radiation exposure rate measurements on contact and at one meter vertically off the floor (μ R/hr)

The survey record tool was set up to convert "cpm" values to "dpm" using instrument specific calibration sheets, enabling the Field Team to see in real-time the corresponding field measurements in disintegrations per minute (dpm) for direct comparison with the Reg Guide 1.86 Table-I criteria (Table 4-2).

In addition to the Survey Record, the Sample Description Log is included in Appendix F. This document provides supplementary descriptions of the survey locations in addition to the

information provided in the Survey Record. Survey Sketches (Appendix G) provide pictorial representations of the specific locations where direct measurements and smear samples were taken.

All survey results were found to be indicative of background radiation levels and were less than Reg Guide 1.86 Table-I limits.

4.3 LABORATORY RESULTS

All laboratory results are provided in Appendix J. In addition to the analytical results, this appendix includes: Certificate of Analysis Report, QC Summary, copy of CoC, Sample Receipt and Review Form, and a listing of GEL's current certifications.

These results, received from GEL Laboratories, support the initial field team findings that there are no areas displaying radioactivity in excess of the respective actions levels. All sample results were less than the most restrictive Reg Guide 1.86 removable contamination limits of 20 dpm/100 cm² alpha, 200 dpm/100 cm² beta, or 1000 dpm/100 cm² tritium. As a result, no additional investigation was warranted.

5.0 CONCLUSIONS

All data collected and survey results support the conclusion that there is no evidence of radiological contamination or radioactive material present at the Sievers Sandburg Site. In accordance with the MARSSIM guidance document and based on the data presented in this report, the Sievers Sandburg Site can be considered radiologically non-impacted and available for unrestricted use with respect to radiological hazards.

6.0 RECOMMENDATIONS

TPMC recommends using the results of this Radiological Site Assessment as evidence that the Sievers Sandburg Site is free of residual radiological contamination and unsecured radioactive material. Thus, the Site can be considered radiologically non-impacted and available for unrestricted use relative to radiological hazards.

7.0 REFERENCES

DoD, DOE, USEPA, and Nuclear Regulatory Commission (NRC), 2000, *Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)*, *NUREG-1575*, *Rev.1*, *EPA 402-R-97-016*, *Rev. 1*, *DOE/EH-0624*, *Rev. 1*, August.

ECP, 2013, Environmental Condition of Property (ECP) Report for Sievers-Sandberg USARC, Pedricktown, NJ, January 2013

TB 43-0116 "Identification of Radioactive Items in the Army"

U.S. Atomic Energy Commission Regulatory Guide, NRC Reg Guide 1.86, *Termination of Operating Licenses for Nuclear Reactors*, June 1974

APPENDIX AHISTORICAL REVIEW CHECKLIST

SITE HISTORICAL DATA REVIEW Validation of MARSSIM Appendix B Approach

Site: Sievers Sandberg U.S. Army Reserve Center, Route 130 and Artillery Avenue Pedricktown, NJ 08067 (NJ013)

Team Lead / Reviewer: J. Green **Date reviewed:** 4/29/13

Documents reviewed:

All historical documents provided by 99th Regional Supporting Command (RSC) Point of Contact (POC) were reviewed to guide radiological assessment at the site.

Site summary:

A review of the site Environmental Condition of Property Report (ECP, 2013) indicated that the site includes approximately 40 acres of land improved with eleven buildings, four detached garages and three storage sheds. A military vehicle parking area also exists on the northwest corner of the Property. According to historical documentation, in 1917, the USACE began acquiring farms along the Delaware River to serve as the Delaware Ordnance Depot. In 1954, the Delaware Ordnance Depot was redesignated by the Army as the Raritan-Delaware Storage Activity. The Camp Pedricktown property was transferred to Fort Dix in 1962. In 1965, 42 facilities were leased to the Salem County Technical Institute until the late 1960s. The federal government declared 23 acres of the Philadelphia Air Defense Site as surplus, and transferred the property to Salem County in 1972. In 1975, 11 of the 23 acres were transferred to Salem County Community College. In 1993, jurisdiction of the 23 acres property was given to the 79th Army Reserve Command (ARCOM). In 1996, the property was expanded to the present-day size of 40 acres (ECP, 2013).

Building 171

It is a three story concrete block with brick exterior structure built in 1942. Its use was for Headquarters administrative purposes and is 7,067 square feet (ft²).

Building 173

It is a one story concrete block structure built in 1961. Its use was for officer's mess hall purposes and is 7,215 ft².

Building 190

It is a one story concrete block with brick exterior structure. Its use was for guard shed purposes and is 50 ft².

Building 273

It is a three story concrete block with brick exterior structure built in 1939. Its use was for enlisted barracks and more recently office purposes and is 15,073 ft².

Building 274

It is a two story concrete block with brick exterior structure built in 1939. It was used as old post hospital/dispensary purposes and is 4,191 ft².

Building 285

It is a one story wood exterior structure on concrete pad. Its use was for garage storage purposes and is 500 ft².

Building 404

It is a large brick structure that was divided into a firehouse, train roundhouse, and automotive garage. The fire garage section contains three vehicular openings with two round windows. It is one story with some 2nd level storage, concrete block with brick exterior structure, built in 1942, and 22,205 ft².

Building 413

Building 413 was formerly a gas station used to fuel motor pool vehicles and more recently storage. It is a one story concrete block structure built in 1931 and is 257 ft².

Building 434

This general storage building is a long one-story rectangular structure with an elevated concrete loading platform. Ten roll-up doors allowed materials to be unloaded directly from trucks into the warehouse. It was built in 1951 and is 15,040 ft².

Building 464

It is a low, elongated one-story building built in 1951 and is 15,040 ft². There are several irregularly spaced steel entry doors throughout.

Building 475

It is a one story concrete block. Its use was for latrine purposes and is 100 ft².

Houses and Garages

These facilities should not have stored any radioactive material except smoke detectors and were not surveyed.

Based on available information, no radiological survey/assessment has been performed at the site. According to an Environmental Baseline Survey (EBS) conducted in 2003, radon monitoring occurred at the Property in 1992 at Buildings 171, 173, 273, and 404. None of these buildings had radon levels exceeding 4.0 pCi/L. Additional radon testing was conducted in 1998 at Buildings 171, 273, 274, 404, 434 and 464. Radon concentrations ranged from 0.1-0.5 pCi/L.

Potential for radioactive commodity use, handling, or storage:

As documented in Section 6.2.5 of the ECP, "According to the EBS report, an industrial radiation survey was conducted at Building 274 (old hospital/dispensary) in 1998. No radiological health hazards were identified. At the time of the February 2012 site inspection there was no evidence to suggest that any radiological commodities were ever improperly managed at the Property, or that any radionuclide was ever released." Based on the mission of the Army Reserve units stationed at the site, it is acceptable to assume that some low-level items were stored here (such as compasses, personal Radiation Detection, Indication and Computation (RADIAC) meters, and small arms weapons sights, etc. There is no evidence to suggest that any radiological commodities were ever improperly used or stored at the site or that any radioactive materials were released to the environment.

Findings, if any:

No specific radiological concerns exist.

Conclusion:

There is no evidence to suggest that radioactive commodities were ever stored or improperly managed at the site, or that any radionuclides within seal-source items were ever released. Therefore, the site qualifies for the simplified assessment procedure of Appendix B of MARSSIM.

References:

 ECP, 2013, Environmental Condition of Property (ECP) Report for Sievers Sandberg USARC, Pedricktown, NJ, January 2013

APPENDIX BVISUAL INSPECTION CHECKLIST

VISUAL INSPECTION CHECKLIST

Site Location: Sievers Sandberg U.S. Army Reserve Center, Pedricktown, NJ (NJ013)

Date: 5/7/13 Team Lead: J. Green

Item #		Areas for Review	YES	ON	OBSERVED	NOT OBSERVED	N/A	COMMENTS
		Key Indicators to loc	ok f	or				
1		n spots in vault, storage, supply room. Could be indication in instrument or equipment that broke at some point in the			X			Debris and stains in several locations
2	Pres	sence of stored liquids			Х			Mainly cleaning supplies
3		ns that may have radioactive material. (Exit Signs, smoke ector etc.)		Х				
4	Any	areas marked, or previously marked, with RAD signs		Х				
5		ntified any radioactive commodities? (What are they, dition, etc.)		Х				
6		olems accessing site? (Can't contact POC, scheduling flict, etc.)		Х				
7		areas at site not accessible? (Locked Connex, area, age cabinet, etc.)	Х					Garage bays and Vault in Bldg 404, basement in 273*
8		radioactive signage? (Is the radioactive commodity there it historical in nature)		Х				
		Areas with higher potential of radio	log	ical	CO	трс	ne	nts
9		ms that may have previously stored ammunition or osives (Could be an indication of potential DU)	Х					Vaults
10		lical rooms where x-ray equipment was stored or used – cally only radioactive signage/no RAM		Х				
11		as that CBRN detecting equipment may have been stored rage, supply, vault)			Х			Several locations
12		ntenance areas, especially where radioactive aponents/commodities may have managed		Х				
13		as where Engineer/Construction units used/stored soil sture/density gauges		Х				
14		all arms storage areas (Indication of radio-luminescenting sights or night vision equipment use and storage)	Х					Vaults
15	NO as E	leted Uranium munitions use or storage FE: these items are only used in large caliber guns such Bradley Fighting Vehicle, Mini Gun Systems, and Main le Tanks. Normally not found at USARCs.		х				

^{*} Second site visit was completed on 5/21/13 to survey inaccessible areas during the first site visit.

APPENDIX CDOCUMENTATION OF SURVEY APPROACH

Survey Approach Documentation Form

Site Location: Sievers Sandberg U.S. Army Reserve Center, Pedricktown, NJ (NJ013)

Date: 5/7/13 **Team Lead**: J. Green

Personnel Interviewed:

Chuck Martin, Area Facility Operations Specialist	Mr. Martin provided access to facility. He was not aware of any radiological commodities that were stored at the site.
--	--

Narrative Documenting Preliminary Survey Approach:

In designing the survey, the survey team initially assume that the site has a low probability for being impacted by residual radioactive materials based on the following three criteria inherent to Army Reserve operations: 1) only small quantities of radioactive materials were used thus presenting an inherently low risk for release or exposure; 2) the radioactive sources used at these sites are typically sealed sources thus minimizing release to the environment; and 3) standard Army protocols that require strict management, control, and reporting of radioactive material use. Based on the low probability of residual radioactive materials remaining at Army Reserve sites, initial survey approach is to follow the MARSSIM simplified survey approach as outlined in MARSSIM Appendix B. This simplified survey approach allows use of a more streamlined and flexible survey strategy incorporating historical process knowledge and data with radiation survey results to determine whether the site is impacted by residual radioactive material above the Nuclear Regulatory Commission (NRC) Regulatory Guide (Reg Guide) 1.86 Table-I limits.

Visual Inspections, interviews, and historical documentation did not indicate any radioactive commodities stored at the site. Based on nature of material and equipment typically utilized by military and transportation units, it is acceptable to assume that some low-level items were stored here (such as compasses, personal RADIAC meters, and small arms weapons sights, etc.).

This site will be considered as five survey units because of the size of the site. The 1st survey unit will be buildings 434, 464 and 475, 2nd will be buildings 171,173 and 190, 3rd will be buildings 404 and 413, 4th will be building 273 and the last will be buildings 274 and 285. The radiological evaluation will include an area radiation survey with a MicroR meter (minimum thirty (30) exposure rate measurements) and a contamination survey consisting of three components for each survey unit:

- Fixed contamination [minimum thirty (30) direct measurements]
- Qualitative removable contamination (large area wipes, as appropriate)
- Quantitative removable contamination [100 cm² smear tests; minimum ten (10) dry wipes for gross alpha/beta and three (3) wet smears for Tritium].

Before collecting the samples; the survey team will perform exposure dose measurement readings. Biased sample locations were then determined based on the exposure dose

measurements if required. Systematic random samples will then be collected so as to obtain good distribution of sampling location throughout the site. The administrative areas and offices will be provided only a few sample/survey locations due to the reduced probability of radioactive materials storage or use in these areas.

Amended Survey Approach as Needed During Real-Time Survey Findings:

Below table summarizes the number of samples collected in the field based on visual observation and professional judgment.

Survey Unit Number	Buildings	Date	Direct alpha and beta	Gamma radiation exposure rate	Alpha /Beta Smears	Tritium Smears	Sample Location No.
Survey Unit 1	434,464 and 475	5/7/13	30	30	11	6	1-30
Survey Unit 2	171,173 and 190	5/8/13	30	30	10	3	31-60
Survey Unit 3	404 and 413	5/8/13 and 5/21/13	32	32	13	5	61-90 and 151-152
Survey Unit 4	273	5/9/13 and 5/21/13	34	34	13	7	91-120 and 153-156
Survey Unit 5	274 and 285	5/9/13	30	30	11	3	121-150

APPENDIX DQUALITY CONTROL DATA

D.1 – Operating Range

D.2 - Instrument Daily Checks

D.3 - Instrument Calibration Sheets

Initial Alpha, Beta-Gamma and Exposure Rate Operating Range Bldgs 434, 464 and 475, Sievers-Sandberg USARC, Pedricktown, NJ (NJ013)

Team <u>JEG/BGC</u> Survey Unit 1

		•		•			
	ALPHA Ins	trument			BETA Inst	rument	
Date	05/07/13	Technician / Initials	JEG	Date	05/07/13	Technician / Initials	JEG
Instrument Model #	Ludlum 2360	Detector Model #	Ludlum 43-93	Instrument Model #	Ludlum 2360	Detector Model #	Ludlum 43-93
Instrument Serial #	278616	Detector Serial #	PR308282	Instrument Serial #	278616	Detector Serial #	PR308282
Instrument Cal Due	09/05/13	Detector Cal Due	09/05/13	Instrument Cal Due	09/05/13	Detector Cal Due	09/05/13
Source Isotope	Th-230	Det Active Area (cm ²)	100	Source Isotope	Tc-99	Det Active Area (cm ²)	100
Source ID #	69054-710	Source Activity (µCi)	0.00448	Source ID #	69053-710	Source Activity (μCi)	0.32
Background cpm 1	0	Source gcpm 1	1463	Background cpm 1	193	Source gcpm 1	57590
Background cpm 2	0	Source gcpm 2	1441	Background cpm 2	227	Source gcpm 2	57557
Background cpm 3	4	Source gcpm 3	1531	Background cpm 3	189	Source gcpm 3	57771
Background cpm 4	3	Source gcpm 4	1520	Background cpm 4	189	Source gcpm 4	57557
Background cpm 5	0	Source gcpm 5	1503	Background cpm 5	208	Source gcpm 5	57686
Background cpm 6	0	Source gcpm 6	1497	Background cpm 6	194	Source gcpm 6	58078
Background cpm 7	0	Source gcpm 7	1532	Background cpm 7	203	Source gcpm 7	58461
Background cpm 8	1	Source gcpm 8	1543	Background cpm 8	206	Source gcpm 8	58181
Background cpm 9	2	Source gcpm 9	1581	Background cpm 9	170	Source gcpm 9	58422
Background cpm 10	1	Source gcpm 10	1507	Background cpm 10	190	Source gcpm 10	58112
Average Bckgrd cpm	1.1	Average Source gcpm	1,511.8	Average Bckgrd cpm	196.9	Average Source gcpm	57,941.5
Average Bckgrd dpm/100 cm ²	4.6			Average Bckgrd dpm/100 cm ²	744.4		
Detector Efficiency	0.238	Lower Range (gcpm) -20%	1209	Detector Efficiency	0.2645	Lower Range (gcpm) -20%	46353
Cable Length (ft)	3	Upper Range (gcpm) +20%	1814	Cable Length (ft)	3	Upper Range (gcpm) +20%	69530
Direct Alpha Action Level (gcpm)	24.9			Direct Beta Action Level (gcpm)	461.4		•

Gamma/Exposure Rate Instrument						
Date	05/07/13	Technician / Initials	JEG			
Instrument Model #	Ludlum 19	Source Isotope	Cs-137			
Instrument Serial #	276748	Source ID #	1314			
Instrument Cal Due	09/07/13	Source Activity (μCi)	1.00			
Background μR/hr 1	6	Source μR/hr 1	260			
Background μR/hr 2	5	Source µR/hr 2	280			
Background μR/hr 3	5.5	Source µR/hr 3	270			
Background μR/hr 4	7	Source μR/hr 4	290			
Background μR/hr 5	6	Source µR/hr 5	280			
Background μR/hr 6	6.5	Source μR/hr 6	270			
Average Bkg μR/hr	6.0	Average Source μR/hr	275.0			
		Lower Range (μR/hr) -20%	220.0			
		Upper Range (μR/hr) +20%	330.0			

Initial Alpha, Beta-Gamma and Exposure Rate Operating Range Bldgs 171, 173 and 190, Sievers-Sandberg USARC, Pedricktown, NJ (NJ013)

Team	JEG/BGC
Su	rvey Unit 2

		· · · · · · · · · · · · · · · · · · ·					
	ALPHA Ins	trument			BETA Inst	rument	
Date	05/08/13	Technician / Initials	JEG	Date	05/08/13	Technician / Initials	JEG
Instrument Model #	Ludlum 2360	Detector Model #	Ludlum 43-93	Instrument Model #	Ludlum 2360	Detector Model #	Ludlum 43-93
Instrument Serial #	278616	Detector Serial #	PR308282	Instrument Serial #	278616	Detector Serial #	PR308282
Instrument Cal Due	09/05/13	Detector Cal Due	09/05/13	Instrument Cal Due	09/05/13	Detector Cal Due	09/05/13
Source Isotope	Th-230	Det Active Area (cm ²)	100	Source Isotope	Tc-99	Det Active Area (cm ²)	100
Source ID #	69054-710	Source Activity (µCi)	0.00448	Source ID #	69053-710	Source Activity (µCi)	0.32
Background cpm 1	2	Source gcpm 1	1586	Background cpm 1	200	Source gcpm 1	58569
Background cpm 2	0	Source gcpm 2	1635	Background cpm 2	173	Source gcpm 2	58556
Background cpm 3	2	Source gcpm 3	1566	Background cpm 3	203	Source gcpm 3	58838
Background cpm 4	2	Source gcpm 4	1517	Background cpm 4	167	Source gcpm 4	58735
Background cpm 5	4	Source gcpm 5	1589	Background cpm 5	164	Source gcpm 5	58520
Background cpm 6	2	Source gcpm 6	1607	Background cpm 6	187	Source gcpm 6	58739
Background cpm 7	0	Source gcpm 7	1519	Background cpm 7	186	Source gcpm 7	58340
Background cpm 8	0	Source gcpm 8	1564	Background cpm 8	165	Source gcpm 8	58669
Background cpm 9	1	Source gcpm 9	1509	Background cpm 9	207	Source gcpm 9	58708
Background cpm 10	3	Source gcpm 10	1570	Background cpm 10	164	Source gcpm 10	58536
Average Bckgrd cpm	1.6	Average Source gcpm	1,566.2	Average Bckgrd cpm	181.6	Average Source gcpm	58,621.0
Average Bckgrd dpm/100 cm ²	6.7			Average Bckgrd dpm/100 cm ²	686.6		
Detector Efficiency	0.238	Lower Range (gcpm) -20%	1253	Detector Efficiency	0.2645	Lower Range (gcpm) -20%	46897
Cable Length (ft)	3	Upper Range (gcpm) +20%	1879	Cable Length (ft)	3	Upper Range (gcpm) +20%	70345
Direct Alpha Action Level (gcpm)	25.4			Direct Beta Action Level (gcpm)	446.1		

Gamma/Exposure Rate Instrument					
Date	05/08/13	Technician / Initials JEC			
Instrument Model #	Ludlum 19	Source Isotope	Cs-137		
Instrument Serial #	276748	Source ID #	1314		
Instrument Cal Due	09/07/13	Source Activity (μCi)	1.00		
Background μR/hr 1	8.5	Source μR/hr 1	270		
Background μR/hr 2	7.5	Source μR/hr 2	280		
Background μR/hr 3	8	Source μR/hr 3	290		
Background μR/hr 4	8	Source μR/hr 4	280		
Background μR/hr 5	8.5	Source μR/hr 5	270		
Background μR/hr 6	8.5	Source μR/hr 6	280		
Average Bkg μR/hr	8.2	Average Source μR/hr	278.3		
		Lower Range (μR/hr) -20%	222.7		
		Upper Range (μR/hr) +20%	334.0		

Initial Alpha, Beta-Gamma and Exposure Rate Operating Range Bldgs 404 and 413, Sievers-Sandberg USARC, Pedricktown, NJ (NJ013)

	AILO, I CUITCRIOWII, INO (1400	,		iivey Offic 3				
		BETA Instrument						
JEG	Date	05/08/13	Technician / Initials	JEG				
Ludlum 43-93	Instrument Model #	Ludlum 2360	Detector Model #	Ludlum 43-93				
PR308282	Instrument Serial #	278616	Detector Serial #	PR308282				
09/05/13	Instrument Cal Due	09/05/13	Detector Cal Due	09/05/13				
100	Source Isotope	Tc-99	Det Active Area (cm ²)	100				
0.00448	Source ID #	69053-710	Source Activity (µCi)	0.32				
1586	Background cpm 1	200	Source gcpm 1	58569				
1635	Background cpm 2	171	Source gcpm 2	58556				
1566	Background cpm 3	179	Source gcpm 3	58838				
1517	Background cpm 4	210	Source gcpm 4	58735				
1589	Background cpm 5	195	Source gcpm 5	58520				
1607	Background cpm 6	196	Source gcpm 6	58739				
1519	Background cpm 7	188	Source gcpm 7	58340				
1564	Background cpm 8	184	Source gcpm 8	58669				
1509	Background cpm 9	209	Source gcpm 9	58708				
1570	Background cpm 10	172	Source gcpm 10	58536				
1,566.2	Average Bckgrd cpm	190.4	Average Source gcpm	58,621.0				
	Average Bckgrd dpm/100 cm ²	719.8						
1253	Detector Efficiency	0.2645	Lower Range (gcpm) -20%	46897				
1879	Cable Length (ft)	3	Upper Range (gcpm) +20%	70345				
	Direct Beta Action Level (gcpm)	454.9						

Team JEG/BGC

Survey Unit 3

3 ()		0 (0 1)							
Direct Alpha Action Level (gcpm)	25.8								
	Gamma/Exposure Rate Instrument								
Date	05/08/13	Technician / Initials	JEG						
Instrument Model #	Ludlum 19	Source Isotope	Cs-137						
Instrument Serial #	276748	Source ID #	1314						
Instrument Cal Due	09/07/13	Source Activity (µCi)	1.00						
Background μR/hr 1	7.5	Source μR/hr 1	270						
Background μR/hr 2	7	Source μR/hr 2	280						
Background μR/hr 3	7.5	Source μR/hr 3	290						
Background μR/hr 4	8	Source μR/hr 4	280						
Background μR/hr 5	8.5	Source μR/hr 5	270						
Background μR/hr 6	7.5	Source μR/hr 6	280						
Average Bkg μR/hr	7.7	Average Source μR/hr	278.3						
		Lower Range (μR/hr) -20%	222.7						
		Upper Range (μR/hr) +20%	334.0						
		L							

ALPHA Instrument

Ludlum 2360 Detector Model #

Technician / Initials

Detector Serial #

Detector Cal Due

Source gcpm 1

Source gcpm 2

Source gcpm 3

Source gcpm 4

Source gcpm 5

Source gcpm 6

Source gcpm 7

Source gcpm 8

Source gcpm 9

Source gcpm 10

Average Source gcpm

Lower Range (gcpm) -20%

Upper Range (gcpm) +20%

Det Active Area (cm2)

Source Activity (µCi)

05/08/13

278616

09/05/13

Th-230

69054-710

2

2

2

3

1

2

2

1

3

2

2.0

8.4

0.238

3

Date

Instrument Model #

Instrument Serial #

Instrument Cal Due

Background cpm 1

Background cpm 2

Background cpm 3

Background cpm 4

Background cpm 5

Background cpm 6

Background cpm 7

Background cpm 8

Background cpm 9

Background cpm 10

Average Bckgrd cpm

Detector Efficiency

Cable Length (ft)

Average Bckgrd dpm/100 cm²

Source Isotope

Source ID #

Initial Alpha, Beta-Gamma and Exposure Rate Operating Range Bldg 273, Sievers-Sandberg USARC, Pedricktown, NJ (NJ013)

		.		, , , , , , , , , , , , , , , , , , , ,			
ALPHA Instrument			BETA Instrument				
Date	05/09/13	Technician / Initials	JEG	Date	05/09/13	Technician / Initials	JEG
Instrument Model #	Ludlum 2360	Detector Model #	Ludlum 43-93	Instrument Model #	Ludlum 2360	Detector Model #	Ludlum 43-93
Instrument Serial #	278616	Detector Serial #	PR308282	Instrument Serial #	278616	Detector Serial #	PR308282
Instrument Cal Due	09/05/13	Detector Cal Due	09/05/13	Instrument Cal Due	09/05/13	Detector Cal Due	09/05/13
Source Isotope	Th-230	Det Active Area (cm ²)	100	Source Isotope	Tc-99	Det Active Area (cm ²)	100
Source ID #	69054-710	Source Activity (μCi)	0.00448	Source ID #	69053-710	Source Activity (µCi)	0.32
Background cpm 1	1	Source gcpm 1	1441	Background cpm 1	188	Source gcpm 1	55505
Background cpm 2	2	Source gcpm 2	1478	Background cpm 2	210	Source gcpm 2	56149
Background cpm 3	1	Source gcpm 3	1467	Background cpm 3	204	Source gcpm 3	56091
Background cpm 4	3	Source gcpm 4	1469	Background cpm 4	216	Source gcpm 4	55790
Background cpm 5	1	Source gcpm 5	1520	Background cpm 5	204	Source gcpm 5	55668
Background cpm 6	3	Source gcpm 6	1518	Background cpm 6	209	Source gcpm 6	56208
Background cpm 7	2	Source gcpm 7	1410	Background cpm 7	183	Source gcpm 7	55778
Background cpm 8	0	Source gcpm 8	1473	Background cpm 8	190	Source gcpm 8	55985
Background cpm 9	4	Source gcpm 9	1456	Background cpm 9	205	Source gcpm 9	55713
Background cpm 10	2	Source gcpm 10	1450	Background cpm 10	192	Source gcpm 10	55808
Average Bckgrd cpm	1.9	Average Source gcpm	1,468.2	Average Bckgrd cpm	200.1	Average Source gcpm	55,869.5
Average Bckgrd dpm/100 cm ²	8.0			Average Bckgrd dpm/100 cm ²	756.5		
Detector Efficiency	0.238	Lower Range (gcpm) -20%	1175	Detector Efficiency	0.2645	Lower Range (gcpm) -20%	44696
Cable Length (ft)	3	Upper Range (gcpm) +20%	1762	Cable Length (ft)	3	Upper Range (gcpm) +20%	67043
Direct Alpha Action Level (gcpm)	25.7			Direct Beta Action Level (gcpm)	464.6		

Team JEG/BGC Survey Unit 4

Gami	ma/Evnosuro	Rate Instrument	
Date	05/09/13	Technician / Initials	JEG
Instrument Model #	Ludlum 19	Source Isotope	Cs-137
Instrument Serial #	276748	Source ID #	1314
Instrument Cal Due	09/07/13	Source Activity (μCi)	1.00
Background μR/hr 1	8.5	Source μR/hr 1	270
Background μR/hr 2	10	Source µR/hr 2	280
Background μR/hr 3	9.5	Source μR/hr 3	280
Background μR/hr 4	10	Source µR/hr 4	290
Background μR/hr 5	9.5	Source µR/hr 5	270
Background μR/hr 6	9.5	Source μR/hr 6	280
Average Bkg μR/hr	9.5	Average Source μR/hr	278.3
		Lower Range (μR/hr) -20%	222.7
		Upper Range (μR/hr) +20%	334.0

Initial Alpha, Beta-Gamma and Exposure Rate Operating Range Bldg 274 and 285, Sievers-Sandberg USARC, Pedricktown, NJ (NJ013)

	Bldg 27	4 and 285, Sievers-Sa	ndberg USA	RC, Pedricktown, NJ (NJ01	13)	· cum	Survey Unit 5
	ALPHA Ins	trument			BETA Inst	rument	·
Date	05/09/13	Technician / Initials	JEG	Date	05/09/13	Technician / Initials	JEG
Instrument Model #	Ludlum 2360	Detector Model #	Ludlum 43-93	Instrument Model #	Ludlum 2360	Detector Model #	Ludlum 43-93
Instrument Serial #	278616	Detector Serial #	PR308282	Instrument Serial #	278616	Detector Serial #	PR308282
Instrument Cal Due	09/05/13	Detector Cal Due	09/05/13	Instrument Cal Due	09/05/13	Detector Cal Due	09/05/13
Source Isotope	Th-230	Det Active Area (cm ²)	100	Source Isotope	Tc-99	Det Active Area (cm ²)	100
Source ID #	69054-710	Source Activity (μCi)	0.00448	Source ID #	69053-710	Source Activity (μCi)	0.32
Background cpm 1	1	Source gcpm 1	1441	Background cpm 1	175	Source gcpm 1	55505
Background cpm 2	3	Source gcpm 2	1478	Background cpm 2	175	Source gcpm 2	56149
Background cpm 3	1	Source gcpm 3	1467	Background cpm 3	166	Source gcpm 3	56091
Background cpm 4	1	Source gcpm 4	1469	Background cpm 4	167	Source gcpm 4	55790
Background cpm 5	0	Source gcpm 5	1520	Background cpm 5	179	Source gcpm 5	55668
Background cpm 6	3	Source gcpm 6	1518	Background cpm 6	155	Source gcpm 6	56208
Background cpm 7	2	Source gcpm 7	1410	Background cpm 7	166	Source gcpm 7	55778
Background cpm 8	3	Source gcpm 8	1473	Background cpm 8	186	Source gcpm 8	55985
Background cpm 9	3	Source gcpm 9	1456	Background cpm 9	154	Source gcpm 9	55713
Background cpm 10	0	Source gcpm 10	1450	Background cpm 10	195	Source gcpm 10	55808
Average Bckgrd cpm	1.7	Average Source gcpm	1,468.2	Average Bckgrd cpm	171.8	Average Source gcpm	55,869.5
Average Bckgrd dpm/100 cm ²	7.1			Average Bckgrd dpm/100 cm ²	649.5		
Detector Efficiency	0.238	Lower Range (gcpm) -20%	1175	Detector Efficiency	0.2645	Lower Range (gcpm) -20%	44696
Cable Length (ft)	3	Upper Range (gcpm) +20%	1762	Cable Length (ft)	3	Upper Range (gcpm) +20%	67043
Direct Alpha Action Level (gcpm)	25.5		·	Direct Beta Action Level (gcpm)	436.3		

Team JEG/BGC

Gami	ma/Exnosure	Rate Instrument	
Date	05/09/13	Technician / Initials	JEG
Instrument Model #	Ludlum 19	Source Isotope	Cs-137
Instrument Serial #	276748	Source ID #	1314
Instrument Cal Due	09/07/13	Source Activity (µCi)	1.00
Background μR/hr 1	8.5	Source μR/hr 1	270
Background μR/hr 2	7	Source µR/hr 2	280
Background μR/hr 3	5.5	Source μR/hr 3	280
Background μR/hr 4	9	Source µR/hr 4	290
Background μR/hr 5	9	Source µR/hr 5	270
Background μR/hr 6	9	Source µR/hr 6	280
Average Bkg μR/hr	8.0	Average Source μR/hr	278.3
		Lower Range (μR/hr) -20%	222.7
		Upper Range (μR/hr) +20%	334.0

Initial Alpha, Beta-Gamma and Exposure Rate Operating Range Bldg 273 Basement and 404 Vault, Sievers-Sandberg USARC, Pedricktown,

JEG

Ludlum 43-93

PR323018

04/05/14

100

0.1

31821

31667

31498

31682

31670

32840

32435

32677

32508

32282

32,108.0

Direct Beta Action Level

(gcpm)

r <u>g USARC, Pedricktown, I</u>	Survey Unit 3 and 4				
	BETA Inst	rument			
Date	05/21/13	Technician / Initials	JEG		
Instrument Model #	Ludlum 2360	Detector Model #	Ludlum 43-93		
Instrument Serial #	287657	Detector Serial #	PR323018		
Instrument Cal Due	04/05/14	Detector Cal Due	04/05/14		
Source Isotope	Sr-90	Det Active Area (cm ²)	100		
Source ID #	4-2013	Source Activity (μCi)	0.1		
Background cpm 1	117	Source gcpm 1	76940		
Background cpm 2	132	Source gcpm 2	77050		
Background cpm 3	136	Source gcpm 3	77056		
Background cpm 4	127	Source gcpm 4	77192		
Background cpm 5	138	Source gcpm 5	77328		
Background cpm 6	164	Source gcpm 6	78839		
Background cpm 7	155	Source gcpm 7	78578		
Background cpm 8	155	Source gcpm 8	79249		
Background cpm 9	137	Source gcpm 9	78791		
Background cpm 10	148	Source gcpm 10	79181		
Average Bckgrd cpm	140.9	Average Source gcpm	78,020.4		
Average Bckgrd dpm/100 cm ²	430.9				
Detector Efficiency	0.327	Lower Range (gcpm) -20%	62416		
Cable Length (ft)	3	Upper Range (gcpm) +20%	93624		

467.9

Team JEG/BGC

Detector Efficiency	0.224	Lower Range (gcpm) -20%	25686
Cable Length (ft)	3	Upper Range (gcpm) +20%	38530
Direct Alpha Action Level (gcpm)	24.4		
		_	
Gamı	ma/Exposure	Rate Instrument	
Date	05/21/13	Technician / Initials	JEG
Instrument Model #	Ludlum 19	Source Isotope	Cs-137
Instrument Serial #	296424	Source ID #	292
Instrument Cal Due	04/03/14	Source Activity (μCi)	1.00
Background μR/hr 1	8	Source μR/hr 1	310
Background μR/hr 2	7.5	Source µR/hr 2	300
Background μR/hr 3	7	Source µR/hr 3	320
Background μR/hr 4	8	Source μR/hr 4	300
Background μR/hr 5	8.5	Source μR/hr 5	310
Background μR/hr 6	8	Source μR/hr 6	310
Average Bkg μR/hr	7.8	Average Source μR/hr	308.3
		Lower Range (μR/hr) -20%	246.7
		Upper Range (μR/hr) +20%	370.0

ALPHA Instrument

Ludlum 2360 Detector Model #

Technician / Initials

Detector Serial #

Detector Cal Due

Source gcpm 1

Source gcpm 2

Source gcpm 3

Source gcpm 4

Source gcpm 5

Source gcpm 6

Source gcpm 7

Source gcpm 8

Source gcpm 9

Source gcpm 10

Average Source gcpm

Det Active Area (cm²)

Source Activity (μCi)

05/21/13

287657

04/05/14

Po-210

5-2013

4

0

1

2

1

1

3

1

2

5

2.0

8.9

Date

Instrument Model #

Instrument Serial #

Instrument Cal Due

Background cpm 1

Background cpm 2

Background cpm 3

Background cpm 4

Background cpm 5

Background cpm 6

Background cpm 7

Background cpm 8

Background cpm 9

Background cpm 10

Average Bckgrd cpm

Average Bckgrd dpm/100 cm²

Source Isotope

Source ID #

DAILY INSTRUMENT PERFORMANCE CHECK LOG

			Blo	lgs 434, 464	and 475, Sievers-	Sandberg USARC,	Pedricktow	n, NJ (NJ013)		Sur	vey Unit 1
	Rate Meter facturer	Ludlı	ım	Model #	Ludlum 19		Serial #	276748		Cal Due Date	9/7/13
	or / Probe facturer	Ludlı	ım	Model #	Ludlum 43-93		Serial #	PR308282		Cal Due Date_	9/5/13
	ent / Meter facturer	Ludlı	ım	Model #	Ludlum 2360		Serial #	278616		Cal Due Date	9/5/13
Alpha	Source #	69054-710	Isotope	Th-2	230	Activity (μCi)	0.0044	1 8	± 20% Range	1209-18	14
Beta	Source #	69053-710	Isotope	Tc-	99	Activity (μCi)	0.32		± 20% Range	46353-695	530
Gamma	Source #	1314	Isotope	Cs-	137	Activity (μCi)	1.00		± 20% Range	220-330)
Detector/ P	robe Efficienc	cv(a):	0.23	18	Detector/Probe	Efficiency (β):	0.264	 5			

JEG/BGC

Team No.:

Date	Time	Instrument Physical Check Sat	Instrument & Detector in Calibration	Battery Check?	Source Alpha	Source Beta	Source Gamma	Response Chk – Init	Response Chk – End	Response Check
	Pre / Post	(Y / N)	(Y / N)	(Y / N)	(cpm)	(cpm)	(μR/hr)	Net Value (cpm, μR)	Net Value (cpm, μR)	Technic. Initials
05/07/13	12:40 PM	Υ	Υ	Y	1511.8	57941.5	275	ok	ok	JEG
03/07/13	4:52 PM	Υ	Υ	Y	1420	60301	280	ok	ok	JEG

DAILY INSTRUMENT	PERFORMANCE	CHECK LOG
DAILTHIOTRUMENT	PERFURINGE	CHECK LOC

Survey Unit 2 Bldgs 171, 173 and 190, Sievers-Sandberg USARC, Pedricktown, NJ (NJ013) Exposure Rate Meter Manufacturer Cal Due Date Ludlum Model # Ludlum 19 Serial # 276748 9/7/13 Detector / Probe Manufacturer Ludlum Model # Ludlum 43-93 Serial # PR308282 Cal Due Date 9/5/13 Instrument / Meter Ludlum 2360 278616 9/5/13 Manufacturer Ludlum Model # Serial # Cal Due Date Th-230 Activity (µCi) Alpha Source # 69054-710 0.00448 ± 20% Range 1253-1879 Isotope Source # Activity (µCi) ± 20% Range 46897-70345 Beta Isotope Tc-99 0.32 69053-710 Activity (µCi) ± 20% Range 223-334 Gamma Source # Cs-137 1.00 1314 Isotope Detector/ Probe Efficiency (a): 0.238 Detector/Probe Efficiency (β): 0.2645

JEG/BGC

Team No.:

Date	Time	Instrument Physical Check Sat	Instrument & Detector in Calibration	Battery Check ?	Source Alpha	Source Beta	Source Gamma	Response Chk – Init	Response Chk – End	Response Check
	Pre / Post	(Y / N)	(Y / N)	(Y / N)	(cpm)	(cpm)	(μR/hr)	Net Value (cpm, μR)	Net Value (cpm, μR)	Technic. Initials
05/08/13	12:50 PM	Y	Y	Υ	1566.2	58621	278.333	ok	ok	JEG
03/06/13	3:05 PM	Υ	Υ	Υ	1495	59439	280	ok	ok	JEG

DAILY INSTRUMENT PERFORMANCE CHECK LOG

			[Bldgs 404 a	Survey Unit						
Exposure Rate Meter Manufacturer		Ludlum		Model #	Ludlum 19	lum 19		276748		Cal Due Date	9/7/13
	r / Probe acturer	Ludl	um	Model #	Ludlum 43-93		Serial #	PR308282		Cal Due Date	9/5/13
	nt / Meter acturer	Ludl	um	Model #	Ludlum 2360		Serial #	278616		Cal Due Date	9/5/13
Alpha	Source #	69054-710	Isotope	Th-2	230	Activity (μCi)	0.0044	18	± 20% Range	1253-187	9
Beta	Source #	69053-710	Isotope	Tc-	99	Activity (μCi)	0.32		± 20% Range	46897-703	345
Gamma	Source #	1314	Isotope	Cs-	137	Activity (μCi)	1.00		± 20% Range	223-334	
Detector/ Pi	robe Efficienc	y(a):	0.23	8	Detector/Probe	Efficiency (β):	0.264	5			

JEG/BGC

Team No.:

Date	Time	Instrument Physical Check Sat	Instrument & Detector in Calibration	Battery Check?	Source Alpha	Source Beta	Source Gamma	Response Chk – Init	Response Chk – End	Response Check
	Pre / Post	(Y / N)	(Y / N)	(Y / N)	(cpm)	(cpm)	(μR/hr)	Net Value (cpm, μR)	Net Value (cpm, μR)	Technic. Initials
05/08/13	8:20 AM	Y	Υ	Υ	1566.2	58621	278.333	ok	ok	JEG
03/06/13	11:30 AM	Υ	Υ	Υ	1459	58203	270	ok	ok	JEG
		-								

DAILY INSTRUMENT	PERFORMANCE	CHECK LOG
DAILTHIOTRUMENT	PERFURINGE	CHECK LOC

Survey Unit 4 Bldg 273, Sievers-Sandberg USARC, Pedricktown, NJ (NJ013) **Exposure Rate Meter** Manufacturer Cal Due Date Ludlum Model # Ludlum 19 Serial # 276748 9/7/13 Detector / Probe Manufacturer Ludlum Model # Ludlum 43-93 Serial # PR308282 Cal Due Date 9/5/13 Instrument / Meter Ludlum 2360 278616 9/5/13 Manufacturer Ludlum Model # Serial # Cal Due Date Th-230 Activity (µCi) Alpha Source # 69054-710 0.00448 ± 20% Range 1175-1762 Isotope Source # Activity (µCi) ± 20% Range 44696-67043 Beta Isotope Tc-99 0.32 69053-710 Activity (µCi) ± 20% Range 223-334 Gamma Source # Cs-137 1.00 1314 Isotope Detector/ Probe Efficiency (a): 0.238 Detector/Probe Efficiency (β): 0.2645

JEG/BGC

Team No.:

Date	Time	Instrument Physical Check Sat	Instrument & Detector in Calibration	Battery Check ?	Source Alpha	Source Beta	Source Gamma	Response Chk – Init	Response Chk – End	Response Check
	Pre / Post	(Y / N)	(Y / N)	(Y / N)	(cpm)	(cpm)	(μR/hr)	Net Value (cpm, μR)	Net Value (cpm, μR)	Technic. Initials
05/09/13	12:05 PM	Y	Υ	Υ	1468.2	55869.5	278.333	ok	ok	JEG
05/09/13	2:20 PM	Υ	Υ	Υ	1538	58546	280	ok	ok	JEG
		1								

DVIIA	INICTRIMENT	PERFORMANCE	CHECKI	00
DAILT	INSIKUMENI	PERFURINGE	CHECKL	_UG

Survey Unit 5 Bldg 274 and 285, Sievers-Sandberg USARC, Pedricktown, NJ (NJ013) **Exposure Rate Meter** Manufacturer Cal Due Date Ludlum Model # Ludlum 19 Serial # 276748 9/7/13 Detector / Probe Manufacturer Ludlum Model # Ludlum 43-93 Serial # PR308282 Cal Due Date 9/5/13 Instrument / Meter Ludlum 2360 278616 9/5/13 Manufacturer Ludlum Model # Serial # Cal Due Date Th-230 Activity (µCi) Alpha Source # 69054-710 0.00448 ± 20% Range 1175-1762 Isotope Activity (µCi) ± 20% Range 44696-67043 Beta Source # Isotope Tc-99 0.32 69053-710 Activity (µCi) 223-334 Gamma Source # Cs-137 1.00 ± 20% Range 1314 Isotope Detector/ Probe Efficiency (a): 0.238 Detector/Probe Efficiency (β): 0.2645

JEG/BGC

Team No.:

Date	Time	Instrument Physical Check Sat	Instrument & Detector in Calibration	Battery Check ?	Source Alpha	Source Beta	Source Gamma	Response Chk – Init	Response Chk – End	Response Check
	Pre / Post	(Y / N)	(Y / N)	(Y / N)	(cpm)	(cpm)	(μR/hr)	Net Value (cpm, μR)	Net Value (cpm, μR)	Technic. Initials
05/09/13	8:20 AM	Y	Y	Υ	1468.2	55869.5	278.333	ok	ok	JEG
03/09/13	10:40 AM	Υ	Υ	Υ	1445	54360	280	ok	ok	JEG
i										

DAILY INSTRUMENT PERFORMANCE CHECK LOG

			Bldg 273 '	Basement	and 404 Vault, Siev	ers-Sandberg US	SARC, Pedric	cktown, NJ (NJ013)		Survey Un	it 3 and 4
Exposure F Manufa		Ludlu	ım l	Model #	Ludlum 19		Serial #	296424		Cal Due Date	4/3/14
Detector Manufa	,	Ludlu	ım l	Model #	Ludlum 43-93		Serial #	PR323018		Cal Due Date	4/5/14
Instrumer Manufa		Ludlu	ım n	Model #	Ludlum 2360	<u> </u>	Serial #	287657		Cal Due Date	4/5/14
Alpha	Source #	5-2013	Isotope	Po-2	210	Activity (μCi)	0.1		± 20% Range	25686-3853	30
Beta	Source #	4-2013	Isotope	Sr-9	90	Activity (μCi)	0.1		± 20% Range	62416-9362	24
Gamma	Source #	292	Isotope	Cs-1	37	Activity (μCi)	1.00)	± 20% Range	247-370	
Detector/ Pr	obe Efficiency	/(a): _	0.224	<u> </u>	Detector/Probe B	Efficiency (β):_	0.32	7			

JEG/BGC

Team No.:

Date	Time	Instrument Physical Check Sat	Instrument & Detector in Calibration	Battery Check?	Source Alpha	Source Beta	Source Gamma	Response Chk – Init	Response Chk – End	Response Check
	Pre / Post	(Y / N)	(Y / N)	(Y / N)	(cpm)	(cpm)	(μR/hr)	Net Value (cpm, μR)	Net Value (cpm, μR)	Technic. Initials
05/21/13	9:05 AM	Y	Υ	Y	32108	78020.4	308.333	ok	ok	JEG
03/21/13	11:00 AM	Υ	Υ	Υ	32518	80771	290	ok	ok	JEG

Voice: (716) 372-5300 Trachmical Survices Fax: (716) 372-5307

243 Root St. Suite 100 Olean, New York 14760

Certificate Of Calibration

243 Root Streat Suite 100 Olean, New York 14760

Calibration Date: 09/05/2012

This Certificate will be accompanied by Calibration Charts or Readings where Applicable

	Custome				Instru	ment			
Customer Name: T C	3 Adams and Asso	ciates		Manufacturer: Ludi	um Measuremei	nts	· ·		
Address: 11 W	Main St			Model: 2360		Serial	Number	278616	
Sprin	gville, NY 14141			Detector Manufactu	ırer: Ludlum Me	asureme	nts	- ······	
Contact Name: Ted /	Adams			Det. Model: 43-93		Serial	Number	PR308282	
Customer PO/ CC. Number:		Work Order Number: 20	12-3936	Calibration Method:	Electronic				
Instrument Received:	☑ Within Toleran	ce Out of	Tolerance [Repairs required	Other (See Com	ments)		
☑ Geotropism	Meter Zero	☑ Mech.		HV Readout	☑ Battery	Check	6	Reset	
☑ Audio	Window Status	FS Res	sponse [Linearity	☐ Backgro	ound Sub	tract [Alarm Set	
Temperature: 71.5F	Humidit	y: 51%	Pressure: 28.4	In Hg	Altitude: 145	O fl			
			Instrumen	t Calibration	: .				1 1
t t. Maliad Dags	Calibration	Instrument F	Response	Referen	ce instruments a	and / or S	ources		
Multiplier/Range	Point	Before Calibration	After Calibration	Pulser: 500-2	220100				:
X 1	100 cpm	102 cpm	102 cpm	Pu239	C7-640	Th2	30		C7-643
X1	400 cpm	400 cpm	400 cpm	Sr90	C7-630	Tc99)		C7-642
X 10	1 kcpm	1 kcpm	1 kcpm	Pu239	C7-840	Th2	30		C7-643
X 10	4 kcpm	4 kcpm	4 kcpm		Con	ments			
X 100	10 kcpm	10 kapm	10 kcpm	Inst, Voltage:	800 V	isotope	•	Efficiency	Distance
X 100	40 kcpm	40 kcpm	40 kcpm	Window Status		Pu239	40.	23.8%	0 inch
X 1K	100 kcpm	100 kcpm	100 kcpm	Beta threshold:	120 mV	Th230	401	21.1%	O inch
X 1K	400 kcpm	400 kcpm	400 kcpm	Alpha threshold:	3,5 mV	Sr90	201	52.9%	0 inch
Digital Scaler	40 cpm	40 cpm	40 cpm	Alpha window:	30 mV	.Tc99	201	23.1%	0 inch
Digital Scaler	400 cpm	400 cpm	400 cpm	1		Pu239	201	47.6%	0 inch
Digital Scaler	4 kcpm	3.998 kcpm	3,998 kcpm	1		Th230	201	42.3%	0 inch
Digital Scaler	40 kcpm	39.981 kcpm	39,981 kcpm						
Digital Scaler	400 kcpm	399.802 kcpm	399.802 kcpm	1		Ref. Vo	ltage 1:	500 V	
				1		inst. Vo	ltege 1:	500 V	
				1		Ref. Vo	ltage 2:	1500 V	
				1		Inst. Vo	itage 2:	1500 V	
	 			1					
				If applicable, the 6 i	month calibratio	n due dal	e is 03/0	5/2013,	
				1					
	<u> </u>			1					
	 			1					
· · · · · · · · · · · · · · · · · · ·	 	<u></u>		1					
		<u> </u>	<u></u>	1					
				1					
	<u> </u>	<u> </u>		1			***************************************		
			Statement	of Certification				 	
MJW Technical Services, I	nc certifies that the al	pove instrument has be	on calibrated by stan	dards traceable to the Na	tional Institute of 5	Standards :	and Techr	lology or to the	calibration
facilities of other Internation calibration techniques. The met all the manufacturer's	nal Standerds organiz a celibration evalem c	ation members, or hav	e been derived from: meats of ISO/IEC 170	eccepted values of natura 125 and ANSI N323. The	al physical constan Instrument listed a	ts or nave bove was	osan den inspected	ved by the ratio prior to shipme	type of
Instrument //	01			el .				''	
Calibrated By	Kalyea		Reviewed By:	Jung &	<u>~</u>	Date	9.	-5-12	

Calibration Due: 09/05/2013

LUDLUM MEASUREMENTS, INC

/ <u>~</u>	Scientific and Inc	1.7	RTIFICATE OF (CALIBRAT	ION 501 Oak Stre 325-235-549		0744 Dutchtown Road 05-392-4601
CUSTO	— DMER TERRAN E AF	R PMC. LLC			Sweetwater,		noxville, TN 37932, U.S.A.
Mfg.	Ludlum Measu		del	19		Serial No. 2001	20219349
Mfg.	AICI			al		_	
Cal. Da		pr-13 Cal Due			Cal Intens		<u> </u>
		cable instr. and/or detect				-	
		ument Received 🔲 V	= -			equiring Popuir .	Alt705.8_ mm Hg
	chanical ck.	✓ Meter Zeroed		Background			
√ F/S	Resp. ck	Reset ck.		Window Ope	eration	☐ input s	Sens. Linearity poism
✓ Au		Alarm Setting	4	´ Batt. ck. (Mi	n. Volt) 2.	2_VDC	
		ith LMI SOP 14.8 rev 12				.MI SOP 14.9 rev 02/0	
Instrumer	t Volt Set650	V Input Sens	26 mV Det. Ope	rn/a	V atn/a	Threshold mV Dial Ratio	<u>n/a</u> =n/a
Z	HV Readout (2 points)	Ref./Inst.	5 /		V Ref./Inst		997 v
COMM	FNTS:						<u> </u>
Cs-137	≈ 1 µCi check	source SN 392	reads ≈ 4U	DμR/hr @	500 positio	on with lahel e	ide
of che	ck source place	d on front dimpl	e of can at sur	face leve	1.	w with raper s	Tae
	•	-					
		•					
Gamma Ca	libration: GM detectors pos	sitioned perpendicular to sou	arce except for M 44-9 in w				
	DANIOE### TIE	- · · ·	ERENCE		RUMENT REC		MENT
	RANGE/MULTIF	· · · ·	POINT	"AS F	OUND READI		READING*
	5000	4000µR	·		NA		1000
	5000	1000µR				<u> </u>	1000
	<u>500</u> 500	400μκ/i	hr= 79000cp	<u></u>	- $+$ $-$		400
	250	200uR/	ur= <u>HOOODCDU</u>	<u> </u>		-	100
	250	100uR	/hr	<u> </u>			100 300
	50	7900 0	pm				
	50		om				40
	25		om				$\frac{20}{10}$
	25		om				5
	*Uncertainty within ± 10%	C.F. within ± 20%	 -			50, 25 Range(s) Ca	librated Electronically
	REFERENCE	INSTRUMENT	INSTRUMENT	RE	FERENCE	INSTRUMENT	INSTRUMENT
	CAL. POINT	RECEIVED	METER READING		L. POINT	RECEIVED	METER READING*
Digital Readout	_NIA	_N/A_	N(A	Log Scale	ALCI		
				Scale		— N IA—	_ N/A
				_			
	<u> </u>						
udlum Measu	rements, Inc. certifies that the a	above instrument has been calib	orated by standards traceable	to the National Inst	itute of Standards and	Technology, or to the calibrat	ion facilities of
		embers, or have been derived frements of ANSI/NCSL Z540-1-1		ii priysical constant	s or have been derived l	by the ratio type of calibration	n techniques. ration License No. LO-1963
		or Sources: 059		4 781		1696 5105 5	717CO 5719CO
		E551 E552			64 ☐ T-304 📝 T		0082 Y982
	na S/N					Other	
		\cdot \wedge \wedge	Oscilloscope S/N				14670125
Calibrated	ву: <u>Ч Г Юти</u>	illa Oqu	لمس		Date <u>3</u>	-apr-13	
Reviewed	IBY: Olana	ahour			Date	5 Op/13	
						1	

This certificate shall not be reproduced except in full, without the written approval of Ludium Measurements, Inc. FORM C22A 02/26/2013 Page ______of _____

		<u></u>
AC Inst.	Passed	Dielectric (Hi-Pot) and Continuity Test
Only	Failed:	- colorate (in tox) and obtaining test

GRIFFIN INSTRUMENTS

CAL	IRRA	MOIT	CERT	IFIC A	TE FOR
-			OEN	II IVA	

276748 2158

Owner: CHP CONSULTANTS

Calibration Sticker Attached?:

Performed/Reviewed by:

Date Instrument is Due For Next Calibration:

λL

DATE: 09/07/12		LOCATION	· · · · · · · · · · · · · · · · · · ·	Gṛlffin I	
TECH: Joanne (Glenn	DATE LAS	T CAL EXPIRES:	02/06	/13
REASON FOR CALIBRAT	ION: Due f	or Calibration			
NIST TRA	CEABLE EQUIPMENT	AND SOURCES U	SED DURING CA	LIBRATION	
PULSER MODEL: 600-2	PULSER S	ERIAL: 284951	PULS	SER CAL DUE:	12/28/12
SOURCE NUMBER: 10250	ISOTOPE	E: Cs137	ASSA	AY DATE:	08/30/07
Fast/Slow Switch working p	roperly 🗸 Aud	io Response	Geotropism	AF HV	AL HV 650 V
Input Sensitivity: 29 mV	mV TEMP 7	5,3 F BAR	O PRESS: 29.32	e" HUMIDI	TY: 58%
A.F.Data	A.F. % ERROR	A.L.Data	.l., % error		•
5000 Scale	I [3.9	2,5%	*Pulsed Sc	
5000 Scale		2.5	0.0%	1 41504 00	u.u
5000 Scale		1.0	0.0%		
500 Scale*	[]	400	0.0%		
500 Scale*		250	0.0%	•	
500 Scale*		100	0.0%		
250 Scale*		200	0.0%	· · · · · · · · · · · · · · · · · · ·	
250 Scale*		125	0.0%		
250 Scale*		50	0.0%		-
50 Scale*] [40	0.0%	. '	•••
50 Scale*		25	0.0%		
50 Scale*] [10	0.0%		
25 Scale*		20	0.0%	•	
25 Scale*		12.5	0.0%		
25 Scale*]	5	0.0%	•	1
CPM/uR/Hr 174	Is the	As Found Data Wi	thin 20% of the Si No, See Ren		<i>i.</i>
•	:	O les G	740, 360 Roll	ilaina .	
				•	•
REMARKS: No previous cal data.					
Does Instrument Meet Final Accepta	ance Criteria?:	Yes () N	lo		

Calibrations performed to ANSI N323A-1997 standards.

Date: 9/7/2012

09/07/13

Joanne Glenn

Designer and Manufacturer of Scientific and Industrial

LUDLUM	MEASUREMENTS,	INC.

L.E	Instruments	" CEI	RITEICATE OF C	ALIBRA FION	325-235-5494		392-4601
	EMER TERRANEAR DM	0110			Sweetwater, TX 795		wille, TN 37932, U.S.A.
CUSTO						RDER NO	20221678/391383
Mfg.	Ludium Measureme	nts, Inc. Mo	del	2360	Serial N	10. <u>28765</u>	7
Mfg.	Ludlum Measureme	nts, Inc. Mo	del	43-93	Serial N	10. PR32:	3034
Cal. Da	ate 7-May-13	Cal Due	Date7	-May-14	Cal. Interval	1 Year Meterf	ace202-855
Check m	ark √applies to applicable	instr. and/or detect	or IAW mfg. spec.		°F RH		
∕ Ne	w Instrument Instrumen	t Received 🖂 V	Vithin Toler. +-10%				
_	echanical ck.	✓ Meter Zeroed		Background Subtra			
ليجوا	S Resp. ck	Reset ck.		Window Operation		Geotropis	s. Linearity m
Aug Aug	_	Alarm Setting	ck.	Batt. ck. (Min. Volt)		RS-232 P	
Calil	brated in accordance with LN	/II SOP 14.8 rev 12/	05/89.	Calibrated in accorda	ance with LMI SOP		
Instrumer	nt Volt Set <u>"100</u> V	•	•				
\checkmark	HV Readout (2 points) Re	ef./Inst. 500	/504	V Ref./Inst.	1500 / 1	190 _v	
Firr	mware Version: 39010	บดอน	•	(EEPROM Sett	tings)		
Alp		Dmv		User Time:	1.0		
Bet		.5mv		Alpha Alarm:	999999		
Bet		Dmv		Beta Alarm:	99999		
	erload <u>Set with</u>	Amaui	91mdpm_	A/B Alarm:	99999		
	trument calibrated with a	39 · cable.	,	Model 2360 Da	<u> </u>	12013	
Hig	h voltage set with detector	<u>connect</u>	ed	Calibration Date		07/2014	
COMM			··				
See At	tachment 1 for Effi	ciencies					
				•			
Gamma Ca	alibration: GM detectors positione	d perpendicular to sou	rce except for M 44-9 in wh	ich the front of probe fa	aces source		
		REF	ERENCE	INSTRUME		INSTRUM	NT
	RANGE/MULTIPLIE		. POINT	"AS FOUN	D READING"	METER RE	
	<u>x1000</u>	400kcj) A		100
	<u>x1000</u> x100	100kc; 40kc;		·	}		100
	x100	10kc	···				100
	x10	4kc			_/		00 <u>1</u>
	<u>x10</u>	1kc					100
	<u>x1</u> x1	400kcr 100kcr			<u> </u>		400
			лп				100
	*Uncertainty within ± 10% C.F.				ALL_		rated Electronically
		STRUMENT CEIVED	INSTRUMENT METER READING*	REFEREN		RUMENT	INSTRUMENT
Digital				CAL. POII	NI REC	EIVED	METER READING*
Readout	400kcpm	<u> 4</u>	उँवर्ता छ	Scale N	<u> </u>	_A(A	NA
	40kcpm 4kcpm		- 3994 				
	400cpm		40				
	40cpm		4 [
Ludium Measu	rements, Inc. certifies that the above in onal Standards Organization members	nstrument has been calib	rated by standards traceable to	the National Institute of S	tandards and Technology	, or to the calibration f	acilities of
The calibration	n system conforms to the requirements	of ANSI/NCSL Z540-1-1	994 and ANSI N323-1978	onysical constants or have	been derived by the ratio State	type of calibration tec of Texas Calibratio	hniques. n License No. LO-1963
Referen	ce Instruments and/or S	ources: 059	280 720 73	4 781 1131	1616 1696	5105 571	
606	48 🗌 70897 📗 73410 📗	E551	G112 M565 S	-394 🔲 S-1054 🔲	T-304 🔲 T879 🔲		
✓ Alpl	ha S/NPu239#43	37 📈	Beta S/NTc99#63	35/83.Sr90y90#5030	Other		
√ m 5	500 S/N 235943	_	Oscilloscope S/N				
₩ ,iii 0	<u> </u>		oscilloscope 3/14		Multimet	er S/N	92780438
Calibrated	d By: <u> </u>	220n		D	ate 1.M0	11.13	
	· () ·	901				ho	2
Reviewed	a By:		и <i>—</i>	D	ate <u> </u>	11 lug1	<u> </u>
This certifica	ate shall not be reproduced except in fu		proval of Ludium Measurement	s, Inc.	AC Inst. Pas	sed Dielectric (Hi-P	ot) and Continuity Test
FURM C225	S 02/26/2013 Page	_of			Only Faile	d:	

LUDLUM MEASUREMENTS, INC.

501 Oak Street 325-235-5494

10744 Dutchtown Road 865-392-4601

Sweetwater, TX 79556, U.S.A.

Knoxville, TN 37932, U.S.A.

Bench Test Data For Detector

Detector	43-93	Serial No. <u>PR 323 018</u>	_ Order#.	20219349	
Customer	TERRANEAR	PMC,LLC	_ Alpha Input Sensitivity	120	mV
Counter _	2360	Serial No. <u>897846</u>	Beta Input Sensitivity	3.5	_ _ mV
Count Time	1Minute_		Beta Window	30	_ mV
Other		NA	_ Distance Source to Detector	ourface	

High Voltage		ground	Size 💃	<u>9u239</u> 30900dpm		1c99 22900dpm		5190y90 8356dpm
	Alpha	Beta :	Alpha	Beta	Alpha	Beta	Alpha	Beta
650		40	5250	353	6_	1982	0	1396
675	}	62	6309	288	_4	3199	0	1930
-700		85	6905	<i>3</i> 00	3	4175	1	2500
125	2	154	7043	322	5	4942	,	2983
750	1	168	7727	359	_8	5715	0	3290
					-			
								· · · · · · · · · · · · · · · · · · ·
				7				
	-			11				
				// (
						1		
AT 7000	·				-			
2360 000		Efficiency	K P.239	= 0.223				
Uttago		2 13 16 16 16 16		= 0-299				
				= 0.182	_		·	

☐ Gas Proportional detector count rate decreased

≤ 10% after 15 hour static test using 39" cable.

Gas proportional detector count rate decreased

10% after 5 hour static test using 39" cable and alpha/beta counter.

Date <u>5. Apr. 13</u>

Phone (404) 352-8677 Fax (404) 352-2837

Standard Radionuclide Source

69054-710

Th-230 47.1 mm Diameter x 0.9 mm Thick Stainless Steel Disk

This standard radionuclide source was prepared by electrodeposition of Th-230 onto a stainless steel disk. activity was determined with a ZnS scintillation detector. calibration was checked by alpha spectroscopy after source preparation.

Analytics maintains traceability to the National Institute of Standards and Technology through Measurements Assurance Programs as described in USNRC Regulatory Guide 4.15, Rev. 1.

ISOTOPE:

Th-230

ACTIVITY (dps):

1.654 E2

HALF-LIFE:

77000 years

CALIBRATION DATE:

October 4, 2004 12:00 EST

RELATIVE EXPANDED

UNCERTAINTY (k=2):

5.0%

Diameter of active area: 43 mm.

Active material deposited on the unmarked surface. Handle carefully to prevent scratching or damaging the active surface of this source (i.e., use Teflon coated forceps). Store in the container provided when not in use.

P O NUMBER LTERC-C4013-1623 OJ-C/O 1, Item 11

SOURCE CALIBRATED BY:

Daniel M. Montgemery, Radiochemist

O A APPROVED:

10-06-2004

No CERTIFICATION
REQUIRED

Phone (404) 352-8677 Fax (404) 352-2837

CERTIFICATE OF CALIBRATION

Standard Radionuclide Source

69053-710

Tc-99 47.1 mm Diameter x 0.9 mm Thick Stainless Steel Disk

This standard radionuclide source was prepared by electrodeposition of Tc-99 onto a stainless steel disk. The 2Π beta emission rate was measured with a 2Π beta scintillation system which was calibrated with a similar source calibrated by NIST.

Analytics maintains traceability to the National Institute of Standards and Technology through Measurements Assurance Programs as described in USNRC Regulatory Guide 4.15, Rev. 1.

ISOTOPE:

Tc-99

 2Π EMISSION RATE (β/sec):

4.964 E3

RELATIVE EXPANDED

5.0%

UNCERTAINTY (k=2): HALF-LIFE:

2.111 E5 years

CALIBRATION DATE:

October 4, 2004 12:00 EST

Diameter of active area: 43 mm.

CAUTION: Active material deposited on the unmarked surface. Handle carefully to prevent scratching or damaging the active surface of this source (i.e., use Teflon coated forceps). Store in the container provided when not in use.

P O NUMBER LTERC-C4013-1623 OJ-C/O 1, Item 10

SOURCE CALIBRATED BY:

Daniel M. Montgomery, Radiochemist

O A APPROVED:

10-06-2004

APPENDIX ESURVEY RECORD FORM

ocati leter/	y Descrion / Are /Probe odel	a :	Direct, we		ord Forn	11	Qi-	to Namo :	Sievers-S	05/07/13		Location	n Dodr	icktown, NJ (N	11013)
ocati /leter/ Mo dlum	ion / Are /Probe odel	a :		ot and dry v	vino micor	D and lara								, ,	10010)
/leter/ Mo dlum	/Probe odel		Ridge 434	4, 464 and		rvey Unit 1)		surveys ic	provide de	terriirie ti	ie radiologicai d	oridition of blug	5 434, 404 anu 4	+73	
Mo llum	del		r/Probe	Probe		1		Efficier	ncy (c/d)		Background (dpm/100cm ² o	r uR/hr)	MDA (dpm/	100 cm ²)
	13-03	Ser	ial#	Area		Cal. Da	ate	α	B		a.	В	γ	a.	<u>100 спт /</u> В
dlum	40-30	PR30	08282	10	00	09/05/	12	0.238	0.2645	5	4.6	744.4	N/A	26.6	193.3
	19	276	6748	N	/A	09/07/	12	N/A	N/A		N/A	N/A	6.0	N/A	N/A
			For MDA	calculation	e the back	around cou	ınt timo is a	esumod to	ho 10 minu	toe and e	ample count tim	o 1 minuto	Pog Guido 1	86 Action Level	
	rument					-					of 1.1, that equa		•	100 cm ²)	
	lum 43-										in+1/10min)* bl		α	β	
L	udlum 2	360	Instrumer	nt backgrou	nd measur	ements tak	en on like s	survey surfa	aces (poure	d concret	e surface)	•	24.9	461.4	
								taminatio	•					Expos	ure Rate
	Direct Fie	ld (gcpm)		ot Field 100 cm ²)		le / Smear / 100 cm ²)	Removabl Field (dpm		Removable Wipe Fiel	•		Removable / Sme ab Data (dpm /100		Contact	One mete
	α	β	α	β	α	β	α	β	α	β	α	<u>β</u>	Tritium	(µR/hr)	elevatior (μR/hr)
	0	192	-4.6	-18.5	0	151	-4.6	-173.5	-	-	0.0368 U	0.402 U	-	7.0	7.5
2	2	179	3.8	-67.7	0	177	-4.6	-75.2	1	180	-	-	-	7.0	7.0
3	0	167	-4.6	-113.0	-	-	-	-	-	-	-	-	-	6.0	6.0
	3	151	8.0	-173.5	-	-	-	-	-	-	-	-	-	5.0	5.0
5	0	167	-4.6	-113.0	-	-	-	-	1	166	-	-	-	5.0	5.0
5	0	148	-4.6	-184.9	-	-	-	-	-	-	-	-	-	5.0	5.5
,	2	164	3.8	-124.4	-	-	-	-	-	-	0.00721 U	0.282 U	-1.76 U	5.5	5.5
3	2	149	3.8	-181.1	-	-	-	-	1	199	-	-	-	5.0	5.0
)	0	169	-4.6	-105.5	-	-	-	-	-	-	-	-	-	9.0	9.0
0	1	134	-0.4	-237.8	-	-	-	-	-	-	-	-	-	6.0	5.5
1	0	180	-4.6	-63.9	-	-	-	-	-	-	-	-	-	5.0	5.5
2	1	124	-0.4	-275.6	-	-	-	-	-	-	-	-	-	4.5	5.0
3	0	150	-4.6	-177.3	0	179	-4.6	-67.7	-	-	0.149 U	0.368 U	1.38 U	6.5	7.0
4	1	173	-0.4	-90.4	-	-	-	-	0	181	-	-	-	6.0	6.0
5	0	187	-4.6	-37.4	0	157	-4.6	-150.9	-	-	-0.0807 U	0.263 U	-0.992 U	8.5	9.0
		Large are	a wipes sh	nould be ap	proximatel	y 1 m ² or g	reater in are	ea.					'	-	
		Ludlum 4	3-89/93 w/	active area	a of 100 cn				00cm ² calc	ulations.		Surveyed b	y: Joe Green, H		
				llected in ev	•		surements.						Braden Case		

Survey Notes:

U - Analyte was analyzed for, but not detected above the MDL, MDA, or LOD. (Non-detect)

Negative results occur when a previously determined counting instrument background value is subtracted from a sample value that is less than the background value. Negative values represent a portion of the statistical distribution of negative and positive values around zero for samples containing very little or no detectable radioactivity.

Radiological Survey Record Form

(continuation sheet)

05/07/13 Date:

Team No.:

JEG/BGC

Site Name: Sievers-Sandberg USARC

Location

Pedricktown, NJ (NJ013)

Survey Description:

Direct, wet and dry wipe, micorR, and large area wipe surveys to provide determine the radiological condition of Bldgs 434, 464 and 475

Location / Area:

(Survey Unit 1) Bldgs 434, 464 and 475

							Con	taminatio	า					Expos	ure Rate
	Direct	(cpm)		ct Field 100 cm²)		le / Smear I00 cm²)	Removab Field (dpm		Removabl Wipe Fie	0	I	Removable / Smea Lab Data (dpm / 100 d		Contact	one meter
	α	β	α	β	α	β	α	β	α	β	α	β	Tritium	(µR/hr)	(µR/hr)
16	0	158	-4.6	-147.1	2	183	3.8	-52.6	-	-	0.124 U	-0.0553 U	-	6.0	6.0
17	1	193	-0.4	-14.7	0	162	-4.6	-131.9	-	-	0.271 U	-0.0669 U	-0.676 U	10.0	10.5
18	0	209	-4.6	45.7	2	165	3.8	-120.6	-	-	0.648	0.809 U	-	7.5	7.5
19	1	168	-0.4	-109.3	-	-	-	-	-	-	-	-	-	5.5	6.0
20	2	151	3.8	-173.5	-	-	-	-	-	-	-	-	-	7.5	7.0
21	2	149	3.8	-181.1	0	153	-4.6	-166.0	-	-	0.703	1.34	-24.2 U	4.0	4.0
22	1	161	-0.4	-135.7	-	-	-	-	0	189	-	-	-	4.5	4.5
23	0	192	-4.6	-18.5	-	-	-	-	-	-	-	-	-	4.5	5.0
24	2	182	3.8	-56.3	0	165	-4.6	-120.6	-	-	0.736	1.16	-	3.5	4.0
25	3	163	8.0	-128.2	-	-	-	-	2	172	-	-	-	4.0	4.0
26	1	174	-0.4	-86.6	-	-	-	-	-	-	-	-	-	4.0	4.0
27	2	164	3.8	-124.4	-	-	-	-	-	-	-	-	-	4.5	5.0
28	1	174	-0.4	-86.6	-	-	-	-	4	174	-	-	-	4.0	4.0
29	1	173	-0.4	-90.4	0	162	-4.6	-131.9	-	-	0.735	0.848	3.88 U	4.0	4.0
30	1	163	-0.4	-128.2	1	152	-0.4	-169.8	-	-	0.387 U	0.0273 U	-	4.0	3.5
31															
32															
33															
34															
35															
36															
37															

Large area wipes should be approximately 1 m2 or greater in area.

Ludlum 43-89/93 w/ active area of 100 cm2 is assumed in direct field dpm/100cm2 calculations.

Dose rates were collected in every room.

Survey Notes:

* Removable/Smear Field values are qualitative measurements.

U - Analyte was analyzed for, but not detected above the MDL, MDA, or LOD. (Non-detect)

Negative results occur when a previously determined counting instrument background value is subtracted from a sample value that is less than the background value. Negative values represent a portion of the statistical distribution of negative and positive values around zero for samples containing very little or no detectable radioactivity.

Surveyed by: Joe Green, Health Physicist

	JEG/BGC		Team No.:		5/08/13		Date :		n	ord Forn	vey Rec	nical Sur	Sadioloc	F	
J013)	ktown, NJ (N	Pedric	Location	USARC	ndberg	Sievers-Sa	e Name :	Sit		014 1 0111	vey nee	jicai oui			
	190	s 171, 173 and	condition of Bldgs	e radiological c	ermine th	provide det	surveys to	e area wipe	R, and larg	/ipe, micor	et and dry w	Direct, we		ey Descri	
								t 2)	Survey Unit	,	I, 173 and 1			ation / Are	Loca
00 cm ²)	MDA (dpm/1	μR/hr) I	pm/100cm ² or _l	ackground (dj	Ва	cy (c/d)	Efficien	ate	Cal. Da		Probe	r/Probe		er/Probe	
ß	α	γ		α		В	α				Area	ial#		1odel	
186.0	29.7					0.2645	0.238		09/05/	00		08282		n 43-93	
N/A	N/A	3.2	N/A 8	N/A		N/A	N/A	12	09/07/	/A	N,	5748	2/6	n 19	alur
		Reg Guide 1.86 (gcpm/10 α 25.4	ates to	mple count tim f 1.1, that equa n+1/10min)* bl	a factor o s {(1/1mir	t times into the same a	round coun e} which is	pling/backg kg count tim	fferent sam bkg cpm/b	ined the di	mula comb n/sample co	so the for [{bkg cpm	93 with	strument dlum 43-9 Ludlum 23	Lu
re Rate		25.4		surrace)	concrete	ices (poured	urvey surfa mination		ements tak	na measur	ıı backgrou	instrumer			
One me	Exposi	r	Removable / Smear		La Area	Removable		Removabl	le / Smear	Removab	t Field	Direc			
elevation	Contact	m ²)	ab Data (dpm /100 ci	La		Wipe Field	/ 100 cm ²)	Field (dpm	/ 100 cm ²)	Field (cpm	100 cm ²)	(dpm /	ld (gcpm)	Direct Fiel	
(µR/hr	(µR/hr)	Tritium	β	α	β	α	β	α	β	α	β	α	β	α	
10.0	10.0	-	-0.221 U	-0.038 U	-	-	-55.2	-2.5	167	1	149.0	1.7	221	2	31
5.0	5.0	-	-	-	154	4	-	-	-	-	-134.6	-2.5	146	1	32
10.0	10.0	-	-	-	-	-	-	-	-	-	-43.9	1.7	170	2	33
4.5	4.0	-	-	-	-	-	-	-	-	-	-93.0	1.7	157	2	34
4.0	4.0	-5.42 U	1.03	0.715	-	-	20.4	-2.5	187	1	-180.0	-2.5	134	1	35
3.0	3.0	-	0.29 U	-0.0377 U	-	-	-168.6	-6.7	137	0	-285.8	10.1	106	4	36
4.0	3.5	-	-	-	-	-	-	-	-	-	-236.7	1.7	119	2	37
5.0	4.5	2.15 U	1.71	0.766	-	-	62.0	-2.5	198	1	-70.3	-6.7	163	0	38
5.0	5.0	-	-	-	-	-	-	-	-	-	-21.2	-2.5	176	1	39
4.0	3.5	-	0.434 U	0.156 U	-	-	-51.4	-2.5	168	1	-164.8	1.7	138	2	40
4.0	4.5	-	-	-	-	-	-	-	-	-	-149.7	-6.7	142	0	41
6.5	6.5	-	0.359 U	-0.05 U	-	-	-36.3	-6.7	172	0	-172.4	-2.5	136	1	42
6.5	6.0	-		-	-	-	-	-	-	-	-36.3	-6.7	172	0	43
7.0	6.5	-9.58 U	3.83	1.07	-	-	-77.9	1.7	161	2	-187.5	-2.5	132	1	44
7.0												1.7			45

Ludlum 43-89/93 w/ active area of 100 cm² is assumed in direct field dpm/100cm² calculations.

Dose rates were collected in every room.

Survey Notes:

* Removable/Smear Field values are qualitative measurements.

U - Analyte was analyzed for, but not detected above the MDL, MDA, or LOD. (Non-detect)

Negative results occur when a previously determined counting instrument background value is subtracted from a sample value that is less than the background value. Negative values represent a portion of the statistical distribution of negative and positive values around zero for samples containing very little or no detectable radioactivity.

Surveyed by: Joe Green, Health Physicist

Radiological Survey Record Form

(continuation sheet)

Date: 05/08/13

Site Name: Sievers-Sandberg USARC

Team No. :

JEG/BGC Pedricktown, NJ (NJ013)

Survey Description: Direct, wet and dry wipe, micorR, and large area wipe surveys to provide determine the radiological condition of Bldgs 171, 173 and 190

Location / Area: Bldgs 171, 173 and 190 (Survey Unit 2)

							Conta	mination						Expos	ure Rate
	Direct	(cpm)		ct Field 100 cm ²)		le / Smear 100 cm²)	Removabl Field (dpm		Removable Wipe Fie		La	Removable / Smea ab Data (dpm / 100		Contact	one meter
	α	β	α	β	α	β	α	β	α	β	α	β	Tritium	(µR/hr)	(µR/hr)
46	1	143	-2.5	-145.9	2	200	1.7	69.6	-	-	0.324 U	0.576 U	-	6.0	6.0
47	0	162	-6.7	-74.1	-	-	-	-	-	-	-	-	-	7.5	7.5
48	4	362	10.1	682.0	-	-	-	-	-	-	-	-	-	10.0	10.5
49	2	148	1.7	-127.0	-	-	-	-	2	179	-	-	-	6.5	6.5
50	0	173	-6.7	-32.5	-	-	-	-	3	163	-	-	-	7.0	7.0
51	1	367	-2.5	700.9	-	-	-	-	-	-	-	-	-	11.0	11.5
52	2	173	1.7	-32.5	-	-	-	-	-	-	-	-	-	7.0	7.0
53	0	176	-6.7	-21.2	-	-	-	-	-	-	-	-	-	6.5	6.5
54	2	139	1.7	-161.1	-	-	-	-	-	-	-	-	-	7.0	6.5
55	1	153	-2.5	-108.1	-	-	-	-	2	167	-	-	-	5.5	5.5
56	4	171	10.1	-40.1	-	-	-	-	-	-	-	-	-	8.5	8.0
57	1	179	-2.5	-9.8	1	191	-2.5	35.5	-	-	0.0701 U	0.769	-	6.0	6.0
58	2	228	1.7	175.4	-	-	-	-	4	161	-	-	-	10.5	10.5
59	3	150	5.9	-119.5	1	179	-2.5	-9.8	-	-	0.245 U	0.869 U	-	7.0	7.5
60	2	154	1.7	-104.3	-	-	-	-	-	-	-	-	-	9.5	9.5

Large area wipes should be approximately 1 m2 or greater in area.

Ludlum 43-89/93 w/ active area of 100 cm2 is assumed in direct field dpm/100cm2 calculations.

Dose rates were collected in every room.

Survey Notes: * Removable/Smear Field values are qualitative measurements.

U - Analyte was analyzed for, but not detected above the MDL, MDA, or LOD. (Non-detect)

Negative results occur when a previously determined counting instrument background value is subtracted from a sample value that is less than the background value. Negative values represent a portion of the statistical distribution of negative and positive values around zero for samples containing very little or no detectable radioactivity.

Surveyed by: Joe Green, Health Physicist

		Radiolo	nical Su	vey Rec	ord Forn	n		Date :		05/08/13		Team No		JEG/BGC	
									Sievers-S			Location		lricktown, NJ (I	NJ013)
	ey Descr	•			-		e area wipe	e surveys to	provide de	termine th	ne radiological c	ondition of Bldg	s 404 and 413		
-oca	tion / Are			1 and 413	(Survey	Unit 3)									
	r/Probe		r/Probe		Active	Cal. Da	ite	Efficier	ncy (c/d)		Background (d	dpm/100cm ² o	r μR/hr)	MDA (dpm/	100 cm ²)
	lodel		ial#	Area				α	В		α	В	γ	α	В
	1 43-93	_	08282		00	09/05/		0.238	0.2645)		719.8	N/A	31.9	190.3
ıdlun	1 19	276	6748	N	/A	09/07/	12	N/A	N/A		N/A	N/A	7.7	N/A	N/A
			For MDA	calculation	s the back	around cou	nt time is a	assumed to	he 10 minu	tes and s	ample count tim	e 1 minute	Reg Guide 1	1.86 Action Level	
	strument					•					of 1.1, that equa			n/100 cm ²)	
	dlum 43-										n+1/10min)* bł		α	β	
- 1	_udlum 2	360							aces (poure			3 1 71	25.8	454.9	
							Con	taminatior	1					Expos	ure Rate
	Direct Fie	eld (gcpm)		t Field		le / Smear		le / Smear	Removable	•		Removable / Sme		Contact	One mete
ŀ		0 1 7		100 cm ²)	` '	/ 100 cm ²)		1 / 100 cm ²)	Wipe Fiel	T		ab Data (dpm /100	cm²) Tritium	(µR/hr)	elevation
	α	β	α	β	α	β	α	β	α	β	α	β			(µR/hr)
51	0	146	-8.4	-167.9	1	197	-4.2	25.0	-	-	0.0464 U	0.894	-0.25 U	6.0	6.0
62	2	156	0.0	-130.1	-	-	-	-	1	185	-	-	-	7.0	7.0
63	2	174	0.0	-62.0	-	-	-	-	-	-	-	-	-	8.0	8.0
64	0	168	-8.4	-84.7	-	-	-	-	-	-	-	-	-	9.0	8.5
65	2	442	0.0	951.2	-	-	-	-	-	-	-	-	-	11.0	10.5
66	1	167	-4.2	-88.5	0	191	-8.4	2.3	-	-	-0.24 U	-0.232 U	-	9.5	9.0
67	1	219	-4.2	108.1	-	-	-	-	-	-	-	-	-	11.0	11.5
68	1	174	-4.2	-62.0	0	192	-8.4	6.0	-	-	0.259 U	0.892	-	8.0	8.5
69	0	450	-8.4	981.5	1	187	-4.2	-12.9	-	-	0.311 U	0.86	-	10.5	10.5
70	3	176	4.2	-54.4	-	_	-	_	_	-	_		-	9.0	9.0
71	1	186	-4.2	-16.6	-	-	-	-	-	-	_	-	-	9.0	9.5
72	2	187	0.0	-12.9	1	189	-4.2	-5.3	_	-	0.347 U	1.17	-	6.5	6.0
73	0	201	-8.4	40.1	3	191	4.2	2.3	_	-	0.252 U	3.93	-	6.5	7.0
74	2	207	0.0	62.8		-		2.0	_	_	0.232 0	5.95	_	7.5	8.0
74 75	1	191	-4.2	2.3	-	-		_	0	188		-		11.5	11.0
J	I			_		. 2	<u> </u>	_	U	100	-	-	-	11.5	11.0
		Ludlum 4 Dose rate	3-89/93 w/ es were co	active area	a of 100 cn ery room.	y 1 m² or gr n² is assume litative mea	ed in direct	field dpm/1	00cm ² calc	ulations.		Surveyed b	y: Joe Green, l Braden Cas	Health Physicist e	

Survey Notes:

U - Analyte was analyzed for, but not detected above the MDL, MDA, or LOD. (Non-detect)

Negative results occur when a previously determined counting instrument background value is subtracted from a sample value that is less than the background value. Negative values represent a portion of the statistical distribution of negative and positive values around zero for samples containing very little or no detectable radioactivity.

Radiological Survey Record Form

(continuation sheet)

Date: 05/08/13
Site Name: Sievers-Sandberg USARC

Team No. :

JEG/BGC Pedricktown, NJ (NJ013)

Survey Description : Direct, wet and dry

Direct, wet and dry wipe, micorR, and large area wipe surveys to provide determine the radiological condition of Bldgs 404 and 413

Location / Area:

Bldgs 404 and 413

(Survey Unit 3)

							Cont	amination	1					Expos	ure Rate
	Direct	(cpm)		ct Field 100 cm ²)		ole / Smear 100 cm²)	Removabl Field (dpm		Removable Wipe Fiel		L	Removable / Smear ab Data (dpm / 100 cr		Contact	one meter
	α	β	α	β	α	β	α	β	α	β	α	β	Tritium	(µR/hr)	(µR/hr)
76	1	212	-4.2	81.7	-	-	-	-	2	189	-	-	-	7.0	7.5
77	2	175	0.0	-58.2	-	-	-	-	-	-	-	-	-	10.0	10.5
78	4	176	8.4	-54.4	-	-	-	-	-	-	-	-	-	9.0	9.5
79	0	144	-8.4	-175.4	-	-	-	-	-	-	-	-	-	8.0	8.0
80	2	210	0.0	74.1	-	-	-	-	-	-	-	-	-	12.5	13.0
81	2	191	0.0	2.3	-	-	-	-	-	-	-	-	-	7.5	7.5
82	0	216	-8.4	96.8	-	-	-	-	-	-	-	-	-	10.0	10.0
83	0	192	-8.4	6.0	1	186	-4.2	-16.6	-	-	0.172 U	0.2 U	-4.51 U	6.5	7.0
84	2	173	0.0	-65.8	2	183	0.0	-28.0	-	-	0.225 U	0.775	-	7.5	7.5
85	3	182	4.2	-31.8	-	-	-	-	1	186	-	-	-	7.0	7.7
86	2	207	0.0	62.8	1	187	-4.2	-12.9	-	-	0.272 U	0.518 U	7.2 U	10.0	10.5
87	3	235	4.2	168.6	-	-	-	-	2	190	-	-	-	10.5	11.0
88	0	154	-8.4	-137.6	1	182	-4.2	-31.8	-	-	0.0846 U	0.149 U	-	5.0	5.5
89	3	303	4.2	425.7	-	-	-	-	-	-	0.619	2.64	-	10.0	10.5
90	6	236	16.8	172.4	2	196	0.0	21.2	1	184	-	-	-	9.5	10.0
91															
92															
93															
94															
95															
96															
97															

Large area wipes should be approximately 1 m2 or greater in area.

Ludlum 43-89/93 w/ active area of 100 cm2 is assumed in direct field dpm/100cm2 calculations.

Dose rates were collected in every room.

Survey Notes:

* Removable/Smear Field values are qualitative measurements.

U - Analyte was analyzed for, but not detected above the MDL, MDA, or LOD. (Non-detect)

Negative results occur when a previously determined counting instrument background value is subtracted from a sample value that is less than the background value. Negative values represent a portion of the statistical distribution of negative and positive values around zero for samples containing very little or no detectable radioactivity.

Surveyed by: Joe Green, Health Physicist

		Radiolog	gical Su	rvey Rec	ord Forr	n	-	Date : ite Name :	Siovere 9	05/09/1		Team No		JEG/BGC ricktown, NJ (N I042)
Cum	ov Dogo	rintian :	Direct w	-	vina maiaa	D. ondlore						Locati		ricktown, NJ (NJU13)
	ey Desci		Bldg 273			R, and larg	e area wip	e surveys to	provide de	etermine	the radiological	condition of Blag	273		
	r/Probe		r/Probe		Active	1	1	Efficion	ncy (c/d)		Dealaraund /	da no /1.00 a no ² a	# D /b #\	MDA (dans)	100 cm²)
	odel		i/Probe ial #		(cm ²)	Cal. Da	ate —		B		Background (B B	r μκ/nr)	MDA (dpm/	100 cm) ß
	43-93		08282		00	09/05/	12	α 0.238	0.264	5	8.0	756.5	N/A	α 31.4	194.8
udlun			6748		/A	09/07/		N/A	N/A		N/A	N/A	9.5	N/A	N/A
									, ! !						
Ins	strument	Notes:				•					sample count tin			.86 Action Level	
	dlum 43-							-			of 1.1, that equa		(gcpm	/100 cm ²)	
	udlum 2			•		• .	-	•			nin+1/10min)* b	kg cpm}]	α	β	
			Instrume	nt backgrou	ind measui	rements tak		survey surfa		ed concre	te surface)		25.7	464.6	
-			Direc	ct Field	Removah	le / Smear		taminatior ble / Smear	Removab	lo I a Aroa		Removable / Sm	ear	Expos	ure Rate
	Direct Fie	eld (gcpm)		100 cm ²)		1 / 100 cm ²)		n / 100 cm ²)	Wipe Fie		ı	ab Data (dpm /100		Contact	One meter elevation
	α	β	α	β	α	β	α	β	α	β	α	β	Tritium	(µR/hr)	(µR/hr)
91	2	169	0.4	-117.6	-	-	-	-	1	205	-	-	-	4.5	5.0
92	1	123	-3.8	-291.5	2	184	0.4	-60.9	-	-	0.682	2.15	-1.77 U	4.5	5.0
93	0	137	-8.0	-238.6	1	212	-3.8	45.0	-	-	0.0103 U	0.649 U	-59.2 U	4.5	5.0
94	0	131	-8.0	-261.2	-	-	-	-	-	-	-	-	-	5.0	5.0
95	0	119	-8.0	-306.6	2	212	0.4	45.0	-	-	0.796	1.88	-	5.0	5.0
96	0	179	-8.0	-79.8	-	-	-	-	2	193	-	-	-	6.0	6.0
97	2	197	0.4	-11.7	-	-	-	-	-	-	-	-	-	6.0	6.0
98	1	166	-3.8	-128.9	-	-	-	-	-	-	-	-	-	7.5	7.5
99	2	157	0.4	-162.9	1	200	-3.8	-0.4	-	-	0.66	0.935	2.12 U	5.0	5.0
100	1	142	-3.8	-219.7	1	223	-3.8	86.6	-	-	0.523	0.934	-	5.0	5.0
101	0	134	-8.0	-249.9	0	188	-8.0	-45.7	-	-	0.4 U	1.16	-	5.0	5.5
102	1	148	-3.8	-197.0	0	204	-8.0	14.7	-		0.494	0.59	2.78 U	6.0	5.5
103	1	147	-3.8	-200.8	-	-	-	-	-	-	-	-	-	5.0	5.0
104	0	179	-8.0	-79.8	1	208	-3.8	29.9	-	-	0.224 U	0.0293 U	9.13 U	5.5	5.5
105	2	188	0.4	-45.7	-	-	-	-	-	-	-	-	-	8.5	9.0
		Ludlum 4	3-89/93 w es were co	llected in ev	a of 100 cn very room.	n ² is assum	ed in direc	t field dpm/1	00cm ² calo	culations.		Surveyed	by: Joe Green, Braden Cas		t

Page 1 of 2

Negative results occur when a previously determined counting instrument background value is subtracted from a sample value that is less than the background value. Negative values represent a portion of the statistical distribution of negative and positive values around zero for samples containing very little or no

detectable radioactivity.

Radiological Survey Record Form

(continuation sheet)

Date: 05/09/13
Site Name: Sievers-Sandberg USARC

Team No. :

JEG/BGC
Pedricktown, NJ (NJ013)

Survey Description : Direct, wet and dry

Direct, wet and dry wipe, micorR, and large area wipe surveys to provide determine the radiological condition of Bldg 273

Location / Area: Bldg 273 (Survey Unit 4)

Contamination **Exposure Rate** Direct Field Removable / Smear Removable / Smear Removable Lg Area Removable / Smear Direct (cpm) Contact one meter (dpm / 100 cm²) (cpm / 100 cm²) Field (dpm / 100 cm²) Wipe Field (cpm) Lab Data (dpm / 100 cm²) (µR/hr) (µR/hr) Tritium В α 224 2 180 12.5 13.0 106 0 -8.0 90.4 107 179 0.4 -79.8 8.0 8.0 418 18.0 108 -3.8 823.8 18.0 109 10.0 2 169 0.4 -117.6 3 189 10.5 110 2 180 0.4 -76.0 9.0 8.5 8.0 0 178 0 207 -8.0 26.1 8.0 111 -8.0 -83.6 0.579 0.781 112 0 130 -8.0 -265.0 8.0 8.0 113 197 198 12.0 12.0 0 -8.0 -11.7 1 198 -7.9 10.5 11.0 114 0.4 115 0 186 -8.0 -53.3 8.5 9.0 -382 4.6 14.0 14.5 116 687.7 16.5 117 2 462 0.4 990.2 16.5 118 14.5 424 -3.8 846.5 14.5 0.4 7.5 119 0 186 -8.0 -53.3 2 212 45.0 0.644 1.9 -0.31 U 8.0 120 195 -3.8 -19.3 2 213 8.5 8.5

Large area wipes should be approximately 1 m2 or greater in area.

Ludlum 43-89/93 w/ active area of 100 cm2 is assumed in direct field dpm/100cm2 calculations.

Dose rates were collected in every room.

Survey Notes: * Removable/Smear Field values are qualitative measurements.

U - Analyte was analyzed for, but not detected above the MDL, MDA, or LOD. (Non-detect)

Negative results occur when a previously determined counting instrument background value is subtracted from a sample value that is less than the background value. Negative values represent a portion of the statistical distribution of negative and positive values around zero for samples containing very little or no detectable radioactivity.

Surveyed by: Joe Green, Health Physicist

		Dadialar	rical Cur	rvey Rec	ard Farr	_		Date :		05/09/13		Team No.	. :	JEG/BGC	
	Г	Radiolog	gicai Sui	vey Rec	ora Fori	11	S	ite Name :	Sievers-S	andberg	USARC	Locatio	n Pedri	cktown, NJ (N	NJ013)
Surv	ey Descr	iption :					e area wip	e surveys to	provide de	termine th	ne radiological	condition of Bldg 2	274 and 285		
Loca	tion / Are	ea :	Bldg 274		(Survey Un	it 5)									
	r/Probe		r/Probe		Active	Cal. Da	ate	Efficier	ncy (c/d)		Background	(dpm/100cm ² or	μR/hr)	MDA (dpm/	100 cm ²)
	odel		ial#		(cm ²)			α	В		α	β	γ	α	В
	1 43-93		08282		00 I/A	09/05/		0.238	0.2645	j	7.1 N/A	649.5	N/A	30.3	181.2
ıdlun	1 19	2/0	6748	IN	/A	09/07/	12	N/A	N/A		IN/A	N/A	8.0	N/A	N/A
Lu	strument dlum 43- Ludlum 2	93 with	so the for [{bkg cpm	mula comb n/sample co	ined the di ount time +	fferent sam bkg cpm/b	pling/back kg count ti	ground cour me} which is	nt times into	a factor ones {(1/1mi	ample count tin of 1.1, that equ n+1/10min)* b e surface)	ates to	Reg Guide 1.8 (gcpm/1 α 25.5	66 Action Level 00 cm ²) β 436.3	
				¥			Cor	ntaminatio	n		,			Expos	ure Rate
	Direct Fie	eld (gcpm)		ct Field 100 cm ²)		le / Smear / 100 cm ²)		ole / Smear n / 100 cm²)	Removable Wipe Fiel			Removable / Smea	cm ²)	Contact (µR/hr)	One mete elevation
	α	β	α	β	α	β	α	β	α	β	α	β	Tritium	(μινιιι)	(µR/hr)
21	0	133	-7.1	-146.7	2	182	1.3	38.6	-	-	0.281 U	0.197 U	-	5.0	5.0
22	0	143	-7.1	-108.9	-	-	-	-	-	-	-	-	-	4.0	4.0
23	1	138	-2.9	-127.8	-	-	-	-	3	148	-	-	-	6.0	6.0
24	1	172	-2.9	0.8	-	-	-	-	-	-	-	-	-	4.5	4.5
25	3	124	5.5	-180.7	1	172	-2.9	0.8	-	-	0.459 U	0.591	-1.09 U	5.0	5.5
26	0	176	-7.1	15.9	0	161	-7.1	-40.8	-	-	0.257 U	0.386 U	-	5.0	5.0
27	1	357	-2.9	700.2	-	-	-	-	-	-	-	-	-	8.5	9.0
28	5	391	13.9	828.7	0	154	-7.1	-67.3	-	-	0.771	0.472 U	-	12.0	11.5
29	3	141	5.5	-116.4	1	161	-2.9	-40.8	-	-	0.0476 U	0.374 U	-	5.0	5.0
30	1	162	-2.9	-37.1	-	-	-	-	-	-	-	-	-	6.5	7.0
.31	0	181	-7.1	34.8	-	-	-	-	1	180	-	-	-	7.0	7.0
.32	0	167	-7.1	-18.1	-	-	-	-	-	-	-	-	-	6.5	7.0
	1	180	-2.9	31.0	-	-	-	-	-	-	-	-	-	7.0	6.5
.33		425	13.9	957.3	1	153	-2.9	-71.1	-	-	0.17 U	-0.124 U	-	11.5	11.5
.33 .34	5														

Dose rates were collected in every room.

Survey Notes:

* Removable/Smear Field values are qualitative measurements.

U - Analyte was analyzed for, but not detected above the MDL, MDA, or LOD. (Non-detect)

Negative results occur when a previously determined counting instrument background value is subtracted from a sample value that is less than the background value. Negative values represent a portion of the statistical distribution of negative and positive values around zero for samples containing very little or no detectable radioactivity.

Radiological Survey Record Form

(continuation sheet)

Date: 05/09/13
Site Name: Sievers-Sandberg USARC

Team No. :

JEG/BGC Pedricktown, NJ (NJ013)

Survey Description : Direct, v

Direct, wet and dry wipe, micorR, and large area wipe surveys to provide determine the radiological condition of Bldg 274 and 285

Location / Area:

Bldg 274 and 285 (Survey Unit 5)

							Con	taminatio	n					Expos	ure Rate
	Direct	(cpm)		t Field 100 cm²)		le / Smear I00 cm²)	Removabl Field (dpm		Removable Wipe Fie	0		Removable / Smear Lab Data (dpm / 100 cn	n ²)	Contact	one meter
	α	β	α	β	α	β	α	β	α	β	α	β	Tritium	(µR/hr)	(µR/hr)
136	2	196	1.3	91.5	-	-	-	-	-	-	-	-	-	8.0	8.5
137	0	432	-7.1	983.7	-	-	-	-	3	158	-	-	-	9.5	9.5
138	0	171	-7.1	-3.0	-	-	-	-	1	180	-	-	-	8.0	8.0
139	0	161	-7.1	-40.8	-	-	-	-	-	-	-	-	-	6.5	7.0
140	1	212	-2.9	152.0	0	152	-7.1	-74.9		-	0.0611 U	1.02 U	-	7.5	7.5
141	0	161	-7.1	-40.8	-	-	-	-		-	-	-	-	7.5	7.5
142	0	180	-7.1	31.0	-	-	-	-	•	-	-	-	-	7.0	7.0
143	0	149	-7.1	-86.2	-	-	-	-	1	171	-	-	-	7.0	7.0
144	4	164	9.7	-29.5	-	-	-	-	-	-	-	-	-	7.0	7.0
145	4	436	9.7	998.9	-	-	-	-	•	-	-	-	-	5.5	6.0
146	0	402	-7.1	870.3	2	174	1.3	8.3	•	-	0.508	0.68 U	-1.06 U	10.0	10.0
147	2	175	1.3	12.1	0	173	-7.1	4.5	-	-	0.0445 U	0.354 U	-	6.5	6.5
148	5	168	13.9	-14.4	-	-	-	-	1	177	-	-	-	5.0	5.5
149	3	184	5.5	46.1	-	-	-	-	-	-	-	-	-	7.5	7.5
150	0	204	-7.1	121.7	2	183	1.3	42.3	-	-	0.275 U	-0.0709 U	-	6.5	6.5

Large area wipes should be approximately 1 m2 or greater in area.

Ludlum 43-89/93 w/ active area of 100 cm2 is assumed in direct field dpm/100cm2 calculations.

Dose rates were collected in every room.

Survey Notes:

* Removable/Smear Field values are qualitative measurements.

U - Analyte was analyzed for, but not detected above the MDL, MDA, or LOD. (Non-detect)

Negative results occur when a previously determined counting instrument background value is subtracted from a sample value that is less than the background value. Negative values represent a portion of the statistical distribution of negative and positive values around zero for samples containing very little or no detectable radioactivity.

Surveyed by: Joe Green, Health Physicist

	l	Radiolog	gical Sui	vey Rec	ord Forr	n	Si	Date : te Name :		05/21/13 andberg	USARC	Team No Locati		JEG/BGC dricktown, NJ (I	NJ013)
	ey Desci								provide de	termine tl	ne radiologica	al condition of E	Bldg 273 Baser	ment and 404 Va	ult
	ation / Are			Basement		ault (Sur	vey Unit 3								
	er/Probe		r/Probe		Active	Cal. Da	ite	Efficier	cy (c/d)	В	ackground ((dpm/100cm ²	or μR/hr)	MDA (dpm/	100 cm ²)
	Model		rial #	Area				α.	β 0.00	,	α	ß	γ	α	<u>β</u>
udlur udlur	n 43-93		23018 6424		00 /A	04/05/ 04/03/		0.224 N/A	0.327 N/A		8.9 N/A	430.9 N/A	N/A 7.8	33.9 N/A	133.5 N/A
uulul	11 13	230	7424	i iv	//	04/03/	13	IN//A	IN//A		IN//A	IN/A	7.0	IN/A	IN//A
Lυ	strument Idlum 43- Ludlum 2	93 with	so the for [{bkg cpm	mula comb n/sample co	ined the di ount time +	fferent sam bkg cpm/bl	pling/backo kg count tir	ground cour ne} which is	nt times into the same	a factor oas {(1/1m	of 1.1, that eq in+1/10min)*		(gcp	2 1.86 Action Level om/100 cm ²)	
			Instrumer	nt backgrou	ind measu	rements tak			aces (poure	d concret	e surface)		24.4	467.9	ura Data
	D:- : [:	-lal ()	Direc	t Field	Removab	le / Smear		mination le / Smear	Removabl	e Lg Area		Removable / S	mear		ure Rate One mete
	Direct Fie	eld (gcpm)	(dpm /	100 cm ²)	Field (cpm	/ 100 cm ²)	Field (dpm	/ 100 cm ²)	Wipe Fie	ld (cpm)		Lab Data (dpm /1	00 cm ²)	Contact	elevation
	α	β	α	β	α	β	α	β	α	β	α	β	Tritium	(μR/hr)	(µR/hr)
151	1	100	-4.5	-125.1	0	162	-8.9	64.5	-	-	5.44	8.82	0 U	5.0	5.5
L52	2	113	0.0	-85.3	0	150	-8.9	27.8	-	-	4.59	7.07	0.913 U	5.5	5.5
153	1	162	-4.5	64.5	0	155	-8.9	43.1	-	-	0.159 U	0.134 U	-15.1 U	9.0	9.0
154	3	315	4.5	532.4	1	150	-4.5	27.8	-	-	0.439	0.682 U	-	14.0	14.5
155	7	293	22.3	465.1	2	143	0.0	6.4	-	-	0.65	1.93	-	10.5	10.5
156	3	305	4.5	501.8	-	-	-	-	3	177	-	-	-	14.0	14.0
	Survey Notes:	Ludlum 4: Dose rate * Remova U - Analy Negative	3-89/93 w/es were collable/Smealte was ana	active area llected in ever Field valually alyzed for, bour when a	a of 100 cr very room. es are qua out not det previously	y 1 m ² or gr n ² is assume litative mea ected above determined background	ed in direct surements the MDL, I counting i	field dpm/1 . MDA, or LC	DD. (Non-de	etect) value is s		Surveyed I	oy: Joe Green Braden Ca	, Health Physicist se	

statistical distribution of negative and positive values around zero for samples containing very little or no

detectable radioactivity.

APPENDIX FSAMPLE DESCRIPTION LOG

Survey unit 1

Survey Location: Bldgs 434, 464 and 475, Sievers-Sandberg USARC, Pedricktown, NJ (NJ013)

No.	Survey Location	Data Type {Large Area Wipe (LAW), Wipe Test (100 cm²)(Wipe) Direct}	(Large Area Wipe LAW), Wipe Test (100		Description of Location (Samples collected on concrete floor unless otherwise noted.)	
1	Bldg 475	Wipe, Direct	Sievers-Sandberg USARC_Sample 1AB	4'N 4'W	Restroom	
2	Bldg 475	LAW, Direct	-	8'N 2'W	Restroom	
3	Bldg 464	Direct	-	12'N 2'W	Office (linoleum)	
4	Bldg 464	Direct	-	11'N 2'W	Office (painted)	
5	Bldg 464	LAW, Direct	-	3'N 24'W	Office (linoleum)	
6	Bldg 464	Direct	-	10'N 5'W	Office (linoleum)	
7	Bldg 464	Wipe, Direct	Sievers-Sandberg USARC_Sample 7ABT	2'N 8'W	NBC	
8	Bldg 464	LAW, Direct	-	7'N 2'W	Entryway (linoleum)	
9	Bldg 464	Direct	-	17'N 3'W	Office (linoleum)	
10	Bldg 464	Direct	-	3'N 10'W	Office (linoleum)	
11	Bldg 464	Direct	-	5'N 12'W	Office	
12	Bldg 464	Direct	-	12'N 3'W	Office (linoleum)	
13	Bldg 464	Wipe, Direct	Sievers-Sandberg USARC_Sample 10ABT	6'S 28'W	Cage	
14	Bldg 464	LAW, Direct	-	16'N 14'W	Thrift	
15	Bldg 464	Wipe, Direct	Sievers-Sandberg USARC_Sample 15ABT	33'N 6'W	Cage (linoleum)	
16	Bldg 464	Wipe, Direct	Sievers-Sandberg USARC_Sample 16AB	18'N 4'W	Cage (linoleum)	
17	Bldg 464	Wipe, Direct	Sievers-Sandberg USARC_Sample 17ABT	42'N 7'W	Cage (linoleum)	
18	Bldg 464	Wipe, Direct	Sievers-Sandberg USARC_Sample 18AB	20'N 2'W	Cage (linoleum)	
19	Bldg 464	Direct	-	3'N 7'W	Restroom (linoleum)	
20	Bldg 464	Direct	-	6'N 7'W	Restroom (linoleum)	
21	Bldg 434	Wipe, Direct	Sievers-Sandberg USARC_Sample 21ABT	187'N 50'W	Bay cage	
22	Bldg 434	LAW, Direct	-	173'N 4'W	Bay cage	
23	Bldg 434	Direct	-	136'N 60'W	Bay cage	
24	Bldg 434	Wipe, Direct	Sievers-Sandberg USARC_Sample 24AB	134'N 13'W	Bay cage	
25	Bldg 434	LAW, Direct	-	96'N 58'W	Bay cage	
26	Bldg 434	Direct	-	95'N 7'W	Bay cage	
27	Bldg 434	Direct	-		Bay cage	
28	Bldg 434	LAW, Direct	<u>-</u>	55'N 9'W	Bay cage	
29	Bldg 434	Wipe, Direct	Sievers-Sandberg USARC_Sample 29ABT		Bay cage	
30	Bldg 434	Wipe, Direct	Sievers-Sandberg USARC_Sample 30AB	23'N 13'W	Bay cage	

SAMPLE LOCATION DESCRIPTION LOG

Survey Location: Bldgs 171, 173 and 190, Sievers-Sandberg USARC, Pedricktown, NJ (NJ013)

No.	Survey Location Data Type (Large Area Wipe (LAW), Wipe Test (100 cm²)(Wipe) Direct}		Lab Sample ID	Sample Location (Starting Point is SE Corner)	Description of Location (Samples collected on concrete floor unless otherwise noted.)
31	Bldg 190	Wipe, Direct	Sievers-Sandberg USARC_Sample 31ABT	2'N 4'W	Guard shack
32	Bldg 171	LAW, Direct	-	3'N 17'W	Office
33	Bldg 171	Direct	-	3'N 7'W	Office
34	Bldg 171	Direct	-	2'N 8'W	Telecom
35	Bldg 171	Wipe, Direct	Sievers-Sandberg USARC_Sample 35ABT	2'N 5'W	Vault
36	Bldg 171	Wipe, Direct	Sievers-Sandberg USARC_Sample 36AB	10'N 2'W	Vault
37	Bldg 171	Direct	-	3'N 6'W	Cage door
38	Bldg 171	Wipe, Direct	Sievers-Sandberg USARC_Sample 38ABT	6'N 3'W	Cage door
39	Bldg 171	Direct	-	6'N 5'W	B15A Storage
40	Bldg 171	Wipe, Direct	Sievers-Sandberg USARC_Sample 40AB	9'N 13'W	Office
41	Bldg 171	Direct	-	4'N 5'W	Rm B15B
42	Bldg 171	Wipe, Direct	Sievers-Sandberg USARC_Sample 42AB	3'N 2'W	Rm B17
43	Bldg 171	Direct	-	2'N 23'W	Rm B17 cage
44	Bldg 171	Wipe, Direct	Sievers-Sandberg USARC_Sample 44ABT	1'N 1'W	Rm B17 cage closet
45	Bldg 171	Direct	-	16'N 2'W	Rm B16
46	Bldg 171	Wipe, Direct	Sievers-Sandberg USARC_Sample 46AB	21'N 17'W	Rm 107 (linoleum)
47	Bldg 171	Direct	-	2'N 6'W	Rm 102 (linoleum)
48	Bldg 171	Direct	-	5'N 3'W	Restroom (tile)
49	Bldg 171	LAW, Direct	-	34'N 3'W	Rm 103 (linoleum)
50	Bldg 171	LAW, Direct	-	32'N 17'W	Rm 208 (linoleum)
51	Bldg 171	Direct	-	16'N 4'W	Restroom (tile)
52	Bldg 173	Direct	-	6'N 2'W	Restroom (linoleum)
53	Bldg 173	Direct	-	2'N 1'W	Janitor closet (linoleum)
54	Bldg 173	Direct	-	3'N 2'W	Restroom (linoleum)
55	Bldg 173	LAW, Direct	-	7'N 17'W	Entryway (linoleum)
56	Bldg 173	Direct	-	9'N 2'W	Office (linoleum)
57	Bldg 173	Wipe, Direct	Sievers-Sandberg USARC_Sample 57AB	3'N 7'W	Storage (linoleum)
58	Bldg 173	LAW, Direct	-	6'N 3'W	Dining Rm (linoleum)
59	Bldg 173	Wipe, Direct	Sievers-Sandberg USARC_Sample 59AB	2'N 4'W	Storage (linoleum)
60	Bldg 173	Direct		4'N 4'W	Restroom (linoleum)

Λ

Survey Unit 2

SAMPLE LOCATION DESCRIPTION LOG

Survey Location: Bldgs 404 and 413, Sievers-Sandberg USARC, Pedricktown, NJ (NJ013) Survey Unit 3

No.	Survey Location	Data Type {Large Area Wipe (LAW), Wipe Test (100 cm²)(Wipe) Direct}	Lab Sample ID	Sample Location (Starting Point is SE Corner)	Description of Location (Samples collected on concrete floor unless otherwise noted.)
61	Bldg 404	Wipe, Direct	Sievers-Sandberg USARC_Sample 61ABT	17'N 0'W	Rm 406 Outside Vault (linoleum)
62	Bldg 404	LAW, Direct	-	3'N 48'W	Entryway (linoleum)
63	Bldg 404	Direct	-	4'N 10'W	Rm 405 (linoleum)
64	Bldg 404	Direct	-	8'N 3'W	Rm 405A (linoleum)
65	Bldg 404	Direct	-	10'N 4'W	Restroom (tile)
66	Bldg 404	Wipe, Direct	Sievers-Sandberg USARC_Sample 66AB	3'N 4'W	Janitor closet (linoleum)
67	Bldg 404	Direct	-	2'N 4'W	Closet
68	Bldg 404	Wipe, Direct	Sievers-Sandberg USARC_Sample 68AB	7'N 4'W	Rm 407
69	Bldg 404	Wipe, Direct	Sievers-Sandberg USARC_Sample 69AB	4'N 3'W	Restroom (tile)
70	Bldg 404	Direct	-	6'N 13'W	Rm 411 (linoleum)
71	Bldg 404	Direct	-	9'N 11'W	Locker room (linoleum)
72	Bldg 404	Wipe, Direct	Sievers-Sandberg USARC_Sample 72AB	16'N 31'W	Cage
73	Bldg 404	Wipe, Direct	Sievers-Sandberg USARC_Sample 73AB	8'N 18'W	Cage stain
74	Bldg 404	Direct	-	12'N 10'W	Cage
75	Bldg 404	LAW, Direct	-	33'N 18'W	Bay cage
76	Bldg 404	LAW, Direct	-	4'N 30'W	Cage
77	Bldg 404	Direct	-	66'N 2'W	Bay
78	Bldg 404	Direct	-	2'N 4'W	Rm 13
79	Bldg 404	Direct	-	4'N 5'W	Under stairs cage
80	Bldg 404	Direct	-	5'N 2'W	Restroom
81	Bldg 404	Direct	-	5'N 45'W	Bay
82	Bldg 404	Direct	-	38'N 4'W	Bay
83	Bldg 404	Wipe, Direct	Sievers-Sandberg USARC_Sample 83ABT	4'N 4'W	Cage
84	Bldg 404	Wipe, Direct	Sievers-Sandberg USARC_Sample 84AB	6'N 13'W	Bay cage
85	Bldg 404	LAW, Direct	-	7'N 13'W	Bay cage
86	Bldg 404	Wipe, Direct	Sievers-Sandberg USARC_Sample 86ABT	13'N 3'W	Bay cage stain
87	Bldg 404	LAW, Direct	-	35'N 20'W	Вау
88	Bldg 404	Wipe, Direct	Sievers-Sandberg USARC_Sample 88AB	4'N 4'W	Вау
89	Bldg 413	Wipe, Direct	Sievers-Sandberg USARC_Sample 89AB	4'N 4'W	Hazmat
90	Bldg 413	LAW, Direct	-	8'N 3'W	Hazmat

0

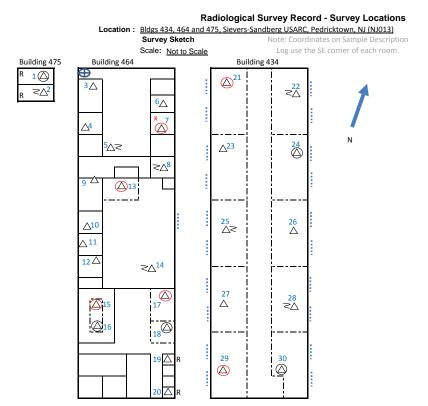
Survey Location: Bldg 273, Sievers-Sandberg USARC, Pedricktown, NJ (NJ013)

No.	Survey Location	Data Type {Large Area Wipe (LAW), Wipe Test (100 cm²)(Wipe) Direct}	Lab Sample ID	Sample Location (Starting Point is SE Corner)	Description of Location (Samples collected on concrete floor unless otherwise noted.)
91	Bldg 273	LAW, Direct	-	5'N 7'W	NBC
92	Bldg 273	Wipe, Direct	Sievers-Sandberg USARC_Sample 92ABT	25'N 9'W	NBC (linoleum)
93	Bldg 273	Wipe, Direct	Sievers-Sandberg USARC_Sample 93ABT	3'N 17'W	NBC cage
94	Bldg 273	Direct	-	6'N 10'W	NBC cage (linoleum)
95	Bldg 273	Wipe, Direct	Sievers-Sandberg USARC_Sample 95AB	5'N 7'W	NBC cage (linoleum)
96	Bldg 273	Direct	-	35'N 1'W	NBC cage
97	Bldg 273	LAW, Direct	-	5'N 19'W	Storage cage
98	Bldg 273	Direct	-	3'N 2'W	Telecom
99	Bldg 273	Wipe, Direct	Sievers-Sandberg USARC_Sample 99ABT	3'N 3'W	Vault cage
100	Bldg 273	Wipe, Direct	Sievers-Sandberg USARC_Sample 100AB	18'N 4'W	Vault cage
101	Bldg 273	Wipe, Direct	Sievers-Sandberg USARC_Sample 101AB	21'N 7'W	Vault cage
102	Bldg 273	Wipe, Direct	Sievers-Sandberg USARC_Sample 102ABT	33'N 3'W	Vault cage
103	Bldg 273	Direct	-	32'N 21'W	Vault cage
104	Bldg 273	Wipe, Direct	Sievers-Sandberg USARC_Sample 104ABT	32'N 32'W	Vault cage
105	Bldg 273	Direct	-	28'N 7'W	Janitor closet
106	Bldg 273	LAW, Direct	-	2'N 10'W	Office (linoleum)
107	Bldg 273	Direct	-	8'N 4'W	Office (linoleum)
108	Bldg 273	Direct	-	12'N 2'W	Restroom (tile)
109	Bldg 273	LAW, Direct	-	25'N 11'W	Hallway (linoleum)
110	Bldg 273	Direct	-	3'N 2'W	Rm 100 (linoleum)
111	Bldg 273	Wipe, Direct	Sievers-Sandberg USARC_Sample 111AB	N 1'W	Rm 102 cage (linoleum) stain
112	Bldg 273	Direct	-	3'N 8'W	Rm 104 (linoleum)
113	Bldg 273	LAW, Direct	-		Rm 105 (linoleum)
114	Bldg 273	Direct	-	9'N 3'W	Rm 106 (linoleum)
115	Bldg 273	Direct	-	5'N 16'W	Rm 108 (linoleum)
116	Bldg 273	Direct	-	10'N 7'W	Restroom (tile)
117	Bldg 273	Direct	-	11'N 2'W	Restroom (tile)
118	Bldg 273	Direct	-	5'N 6'W	Restroom (tile)
119	Bldg 273	Wipe, Direct	Sievers-Sandberg USARC_Sample 119ABT		NBC mask hanger (linoleum)
120	Bldg 273	LAW, Direct	-	3'N 5'W	Rm 201 (linoleum)

Survey Unit 5

Survey Location: Bldg 274 and 285, Sievers-Sandberg USARC, Pedricktown, NJ (NJ013)

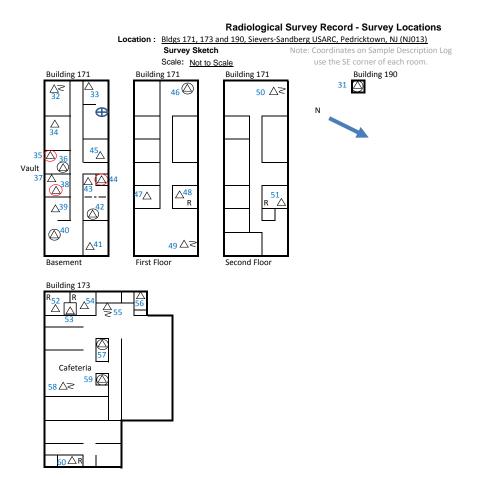
No.	Survey Location	2) ((Alina) Disast)		Sample Location (Starting Point is SE Corner)	Description of Location (Samples collected on concrete floor unless otherwise noted.)	
121	Bldg 274	Wipe, Direct	Sievers-Sandberg USARC_Sample 121AB	4'N 25'W	Breakroom (linoleum)	
122	Bldg 274	Direct	-	27'N 10'W	Breakroom (linoleum)	
123	Bldg 274	LAW, Direct	-	3'N 13'W	Entryway (linoleum)	
124	Bldg 274	Direct	-	3'N 5'W	Vault	
125	Bldg 274	Wipe, Direct	Sievers-Sandberg USARC_Sample 125ABT	7'N 3'W	Vault cage	
126	Bldg 274	Wipe, Direct	Sievers-Sandberg USARC_Sample 126AB	1'N 10'W	Office	
127	Bldg 274	Direct	-	3'N 3'W	Restroom (tile)	
128	Bldg 274	Wipe, Direct	Sievers-Sandberg USARC_Sample 128AB	4'N 5'W	Restroom (tile)	
129	Bldg 274	Wipe, Direct	Sievers-Sandberg USARC_Sample 129AB	4'N 2'W	Office	
130	Bldg 274	Direct	-	1'N 6'W	Office (linoleum)	
131	Bldg 274	LAW, Direct	-	3'N 4'E	Hallway (linoleum)	
132	Bldg 274	Direct	-	3'N 6'W	Office (linoleum)	
133	Bldg 274	Direct	-	6'N 4'W	Office (linoleum)	
134	Bldg 274	Direct	15, 16 gamma 4 484, 7 458	10'N 4'W	Restroom (tile)	
135	Bldg 274	Wipe, Direct	Sievers-Sandberg USARC_Sample 135ABT	7'N 3'W	Lab (tile)	
136	Bldg 274	Direct	-	3'N 2'W	Rm 6 (linoleum)	
137	Bldg 274	LAW, Direct	-	9'N 1'W	Lab (tile)	
138	Bldg 274	LAW, Direct	-	1'N 4'W	Entryway (linoleum)	
139	Bldg 274	Direct	-	3'N 14'W	Office (linoleum)	
140	Bldg 274	Wipe, Direct	Sievers-Sandberg USARC_Sample 140AB	3'N 6'W	A/C (linoleum)	
141	Bldg 274	Direct	-	2'N 7'W	Office (linoleum)	
142	Bldg 274	Direct	-	7'N 6'W	Office (linoleum)	
143	Bldg 274	LAW, Direct	-	2'N 4'W	Hallway (linoleum)	
144	Bldg 274	Direct	-	8'N 2'W	Office (linoleum)	
145	Bldg 274	Direct	-	10'N 3'W	Restroom (tile)	
146	Bldg 274	Wipe, Direct	Sievers-Sandberg USARC_Sample 146ABT	8'N 3'W	Lab (tile)	
147	Bldg 285	Wipe, Direct	Sievers-Sandberg USARC_Sample 147AB	4'N 17'W	Garage	
148	Bldg 285	LAW, Direct	-	15'N 15'W	Garage	
149	Bldg 285	Direct	-	17'N 2'W	Garage	
150	Bldg 285	Wipe, Direct	Sievers-Sandberg USARC_Sample 150AB	4'N 2'W	Garage	

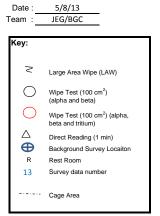

SAMPLE LOCATION DESCRIPTION LOG

Survey Location: Bldg 273 Basement and 404 Vault, Sievers-Sandberg USARC, Pedricktown, NJ (NJ013)

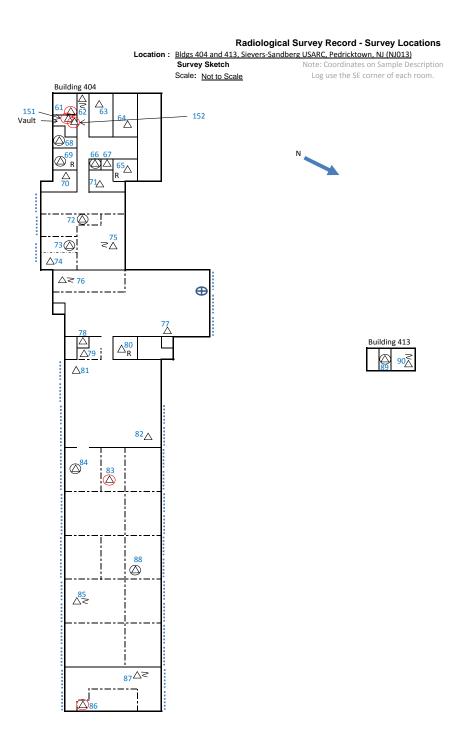
Survey Unit 3 and 4	Survey	Unit 3 and 4
---------------------	--------	--------------

No.	Survey Location	Data Type {Large Area Wipe (LAW), Wipe Test (100 cm²)(Wipe) Direct}	Lab Sample ID	Sample Location (Starting Point is SE Corner)	Description of Location (Samples collected on concrete floor unless otherwise noted.)
151	Bldg 404	Wipe, Direct	Sievers-Sandberg USARC_Sample 151ABT	1'N 1'W	Vault (linoleum)
152	Bldg 404	Wipe, Direct	Sievers-Sandberg USARC_Sample 152ABT	3'N 1'W	Vault (linoleum)
153	Bldg 273	Wipe, Direct	Sievers-Sandberg USARC_Sample 153ABT	1'N 5'W	Storage NBC
154	Bldg 273	Wipe, Direct	Sievers-Sandberg USARC_Sample 154AB	4'N 8'W	Storage (tile)
155	Bldg 273	Wipe, Direct	Sievers-Sandberg USARC_Sample 155AB	14'N 7'W	Storage (tile)
156	Bldg 273	LAW, Direct	-	3'N 10'W	Kitchen (tile)

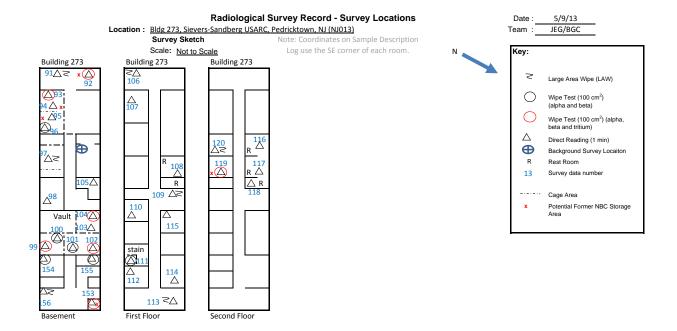

APPENDIX G SURVEY SKETCH



Date : 5/7/13
Team : JEG/BGC



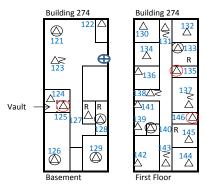
Survey Unit 1

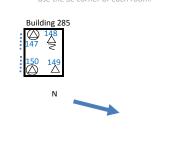

Survey Unit 2

Survey Unit 3

Date : 5/8/13
Team : JEG/BGC

Survey Unit 4


Radiological Survey Record - Survey Locations


Location : Bldg 274 and 285, Sievers-Sandberg USARC, Pedricktown, NJ (NJ013)

Survey Sketch Note: Coordinates on Sample Des

Scale: Not to Scale

Note: Coordinates on Sample Description Log use the SE corner of each room.

Date : 5/9/13 Team : JEG/BGC

Survey Unit 5

APPENDIX HHIGH RESULTS NARRATIVE

HIGH RESULTS NARRATIVE

Site: Sievers Sandberg USARC, Pedricktown, NJ (NJ013)

Sample Location	Remarks
	There were no results that exceeded site assessment criteria.

APPENDIX I SITE PHOTOS

Sievers-Sandberg USARC_Bldg 171 173 and 190_rear view

Sievers-Sandberg USARC_Bldg 171_Sample 35ABT

Sievers-Sandberg USARC_Bldg 171_Sample 36AB

Sievers-Sandberg USARC_Bldg 171_Sample 38ABT

Sievers-Sandberg USARC_Bldg 273 274 and 285_Front

Sievers-Sandberg USARC_Bldg 273_Sample 92ABT

Sievers-Sandberg USARC_Bldg 273_Sample 99ABT

Sievers-Sandberg USARC_Bldg 273_Sample 119ABT

Sievers-Sandberg USARC_Bldg 273_Sample 153ABT

Sievers-Sandberg USARC_Bldg 273_Sample 156

Sievers-Sandberg USARC_Bldg 274_Sample 121AB

Sievers-Sandberg USARC_Bldg 274_Sample 126AB

Sievers-Sandberg USARC_Bldg 274_Sample 146ABT

Sievers-Sandberg USARC_Bldg 404 and 413_rear

Sievers-Sandberg USARC_Bldg 404_Sample 76

Sievers-Sandberg USARC_Bldg 413_Sample 89AB

Sievers-Sandberg USARC_Bldg 434 464 and 475_Front

Sievers-Sandberg USARC_Bldg 434_Sample 21ABT

Sievers-Sandberg USARC_Bldg 464_Sample 7ABT

Sievers-Sandberg USARC_Bldg 464_Sample 17ABT

APPENDIX JANALYTICAL RESULTS

a member of The GEL Group INC

PO Box 30712 Charleston, SC 29417 2040 Savage Road Charleston, SC 29407

P 843.556.8171 F 843.766.1178

www.gel.com

May 16, 2013

Daniel F. Caputo TerranearPMC, LLC 222 Valley Creek Blvd. Suite 210 Exton, Pennsylvania 19341

Re: TerranearPMC, LLC (Project No. 46142) Sievers-Sandberg USARC (NJ013)

Work Order: 325554

Dear Daniel Caputo:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on May 10, 2013. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4505.

Sincerely,

Heather Shaffer

Neatter Shaffer

Project Manager

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

TPMC005 TerranearPMC, LLC (Project No. 46142) Client SDG: 325554 GEL Work Order: 325554

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Heather Shaffer.

	Deatter Shaffer	
Reviewed by		

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 7T Project: TPMC00504
Sample ID: 325554001 Client ID: TPMC005

Sample ID: 325554001 Matrix: Swipe

Collect Date: 07-MAY-13 14:45
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method		
Rad Liquid Scintillation	Analysis								
LSC, Direct Tritium, Filter "As Received"									
Tritium	U	-1.76	23.8	100	dpm/Filter	BYS1 05/11/13	1235 1301113 1		
The following Analytical Methods were performed:									
3.6.4.1	D					1 0			

Method Description Analyst Comments

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 13T Project: TPMC00504
Sample ID: 325554002 Client ID: TPMC005

Sample ID: 325554002 Matrix: Swipe

Collect Date: 07-MAY-13 14:40
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method			
Rad Liquid Scintillation	Analysis									
LSC, Direct Tritium, Filter "As Received"										
Tritium	U	1.38	13.8	100	dpm/Filter	BYS1 05/11/13	1252 1301113 1			
The following Analytical Methods were performed:										
Mathad	Description				And	lyst Commonts				

Method Description Analyst Comments

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 15T Project: TPMC00504
Sample ID: 325554003 Client ID: TPMC005

Sample ID: 3255540 Matrix: Swipe

Collect Date: 07-MAY-13 14:48
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method			
Rad Liquid Scintillation	•									
LSC, Direct Tritium, Filter "As Received"										
Tritium	U	-0.992	13.4	100	dpm/Filter	BYS1 05/11/13	1308 1301113 1			
The following Analytical Methods were performed:										
3.6.4.1	D : .:					1 0				

Method Description Analyst Comments

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 17T Project: TPMC00504 Client ID: TPMC005

Sample ID: 325554004Matrix: Swipe

Collect Date: 07-MAY-13 14:52 10-MAY-13 Receive Date:

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method	
Rad Liquid Scintillation	Analysis							
LSC, Direct Tritium, Filter "As Received"								
Tritium	U	-0.676	14.0	100	dpm/Filter	BYS1 05/11/13	1325 1301113 1	
The following Analytical	l Methods were	performed:						

Description Method **Analyst Comments**

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 21T Project: TPMC00504 Client ID: TPMC005

Sample ID: 325554005 Matrix: Swipe

Collect Date: 07-MAY-13 14:59 Receive Date: 10-MAY-13 Collector: Client

Parameter Qualifier Result DL RL Units DF Analyst Date Time Batch Method Rad Liquid Scintillation Analysis LSC, Direct Tritium, Filter "As Received" Tritium -24.2 61.7 100 dpm/Filter BYS1 05/11/13 1341 1301113 The following Analytical Methods were performed:

Method Description **Analyst Comments**

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 29T Project: TPMC00504 Sample ID: 325554006Client ID: TPMC005

Matrix: Swipe

Collect Date: 07-MAY-13 15:15 10-MAY-13 Receive Date: Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method
*	•	J!!					
LSC, Direct Tritium, Fi	itter "As Receive	a ·					
Tritium	U	3.88	26.2	100	dpm/Filter	BYS1 05/11/13	1357 1301113 1
Rad Liquid Scintillation Analysis LSC, Direct Tritium, Filter "As Received"							
Method	Description				Δn	alvst Comments	

Description

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 1AB Project: TPMC00504
Sample ID: 325554007 Client ID: TPMC005

Matrix: Swipe

Collect Date: 07-MAY-13 14:25
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method	
Rad Gas Flow Proportion	nal Counting							
GFPC, Gross A/B, filter	"As Received"							
Alpha	U	0.0368	0.499	0.500	dpm/Filter	AF1 05/14/13	1059 1301107 1	
Beta	U	0.402	0.578	2.00	dpm/Filter			
The following Analytical Methods were performed:								
Method	Description				Ana	alyst Comments		

1 EPA 900.0/SW846 9310/SM 7110B Modified

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 7AB Project: TPMC00504
Sample ID: 325554008 Client ID: TPMC005

Matrix: Swipe

Collect Date: 07-MAY-13 14:45
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method
Rad Gas Flow Proporti	onal Counting						
GFPC, Gross A/B, filte	er "As Received"						
Alpha	U	0.00721	0.486	0.500	dpm/Filter	AF1 05/11/13	1656 1301107 1
Beta	U	0.282	0.582	2.00	dpm/Filter		
The following Analytical Methods were performed:							
Method	Description				An	alyst Comments	

1 EPA 900.0/SW846 9310/SM 7110B Modified

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 13AB Project: TPMC00504
Sample ID: 325554009 Client ID: TPMC005

Matrix: Swipe

Collect Date: 07-MAY-13 14:40
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst Date	Time Batch Method
Rad Gas Flow Proportion	onal Counting							
GFPC, Gross A/B, filter	r "As Received"							
Alpha	U	0.149	0.463	0.500	dpm/Filter		AF1 05/14/13	2018 1301107 1
Beta	U	0.368	0.815	2.00	dpm/Filter			
The following Analytica	al Methods were	performed:						
Method	Description					Ana	lyst Comments	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 15AB Project: TPMC00504
Sample ID: 325554010 Client ID: TPMC005

Matrix: Swipe

Collect Date: 07-MAY-13 14:48
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units D	F.	Analyst	Date	Time	e Batch N	Method
Rad Gas Flow Proportion	nal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha	U	-0.0807	0.499	0.500	dpm/Filter		AF1 0	5/11/13	1656	1301107	1
Beta	U	0.263	0.439	2.00	dpm/Filter						
The following Analytica	l Methods were	performed:									
Method	Description					Analy	yst Com	nments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 16AB Project: TPMC00504
Sample ID: 325554011 Client ID: TPMC005

Sample ID: 325554011 Matrix: Swipe

Collect Date: 07-MAY-13 14:50 Receive Date: 10-MAY-13

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units I	DF	Analys	t Date	Time	Batch N	lethod
Rad Gas Flow Proporti	onal Counting										
GFPC, Gross A/B, filte	er "As Received"										
Alpha	U	0.124	0.484	0.500	dpm/Filter		AF1	05/11/13	1656	1301107	1
Beta	U	-0.0553	0.695	2.00	dpm/Filter						
The following Analytic	al Methods were	performed:									
Method	Description					Ana	lyst Con	nments			

1 EPA 900.0/SW846 9310/SM 7110B Modified

Page 13 of 85

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 17AB Project: TPMC00504
Sample ID: 325554012 Client ID: TPMC005

Sample ID: 325554012 Matrix: Swipe

Collect Date: 07-MAY-13 14:52 Receive Date: 10-MAY-13

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units D	DF A	Analyst	Date	Time	e Batch N	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha	U	0.271	0.488	0.500	dpm/Filter		AF1 05	5/11/13	1657	1301107	1
Beta	U	-0.0669	0.837	2.00	dpm/Filter						
The following Analytica	l Methods were	performed:									
Method	Description					Analy	yst Com	ments			

1 EPA 900.0/SW846 9310/SM 7110B Modified

Page 14 of 85

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 18AB Project: TPMC00504
Sample ID: 325554013 Client ID: TPMC005

Sample ID: 325554013 Matrix: Swipe

Collect Date: 07-MAY-13 14:54 Receive Date: 10-MAY-13

Collector: Client

_	0 11.61	D 1						_			
Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	Batch N	1 ethod
Rad Gas Flow Proportion	onal Counting										
GFPC, Gross A/B, filte	r "As Received"										
Alpha		0.648	0.498	0.500	dpm/Filter		AF1 0	05/11/13	1657	1301107	1
Beta	U	0.809	0.890	2.00	dpm/Filter						
The following Analytic	al Methods were	performed:									
Method	Description					Ana	alyst Con	nments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 21AB Project: TPMC00504 Client ID: TPMC005

Sample ID: 325554014

Matrix: Swipe

Collect Date: 07-MAY-13 14:59 10-MAY-13 Receive Date: Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analys	t Date	Time	e Batch M	ethod
Rad Gas Flow Proportio	nal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha		0.703	0.481	0.500	dpm/Filter		AF1	05/11/13	1657	1301107	1
Beta		1.34	0.675	2.00	dpm/Filter						
The following Analytica	l Methods were	performed:									
Method	Description					Ana	lyst Cor	nments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 24AB Project: TPMC00504
Sample ID: 325554015 Client ID: TPMC005

Sample ID: 325554015 Matrix: Swipe

Collect Date: 07-MAY-13 15:06
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	Batch 1	Method
Rad Gas Flow Proportio	nal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha		0.736	0.494	0.500	dpm/Filter		AF1 (05/11/13	1657	1301107	1
Beta		1.16	0.944	2.00	dpm/Filter						
The following Analytica	l Methods were j	performed:									
Method	Description					Ana	lyst Con	nments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 29AB Project: TPMC00504
Sample ID: 325554016 Client ID: TPMC005

Sample ID: 325554016 Matrix: Swipe

Collect Date: 07-MAY-13 15:15 Receive Date: 10-MAY-13

Collector: Client

P	Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	Batch	Method
R	Rad Gas Flow Proportion	al Counting										
	GFPC, Gross A/B, filter "	'As Received"										
A	Alpha		0.735	0.499	0.500	dpm/Filter		AF1 0:	5/11/13	1658	1301107	1
В	Beta		0.848	0.606	2.00	dpm/Filter						
T	The following Analytical	Methods were p	erformed:									
N	Method I	Description					Ana	lyst Com	ments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 30AB Project: TPMC00504
Sample ID: 325554017 Client ID: TPMC005

Sample ID: 325554017 Matrix: Swipe

Collect Date: 07-MAY-13 15:18 Receive Date: 10-MAY-13

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method
Rad Gas Flow Proporti	ional Counting						
GFPC, Gross A/B, filte	er "As Received"						
Alpha	U	0.387	0.468	0.500	dpm/Filter	AF1 05/11/13	1658 1301107 1
Beta	U	0.0273	0.655	2.00	dpm/Filter		
The following Analytic	cal Methods were	performed:					
Method	Description				Ana	alyst Comments	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 35T Project: TPMC00504 Sample ID: 325554018Client ID: TPMC005

Matrix: Swipe

Collect Date: 08-MAY-13 13:10 10-MAY-13 Receive Date: Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date T	ime Batch Method	
Rad Liquid Scintillation	•	111						
LSC, Direct Tritium, Fi	Iter "As Receive	1"						
Tritium	U	-5.42	27.6	100	dpm/Filter	BYS1 05/11/13 14	14 1301113 1	
The following Analytica	al Methods were	performed:						
Method	Description				An	alvst Comments		

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 38T Project: TPMC00504
Sample ID: 325554019 Client ID: TPMC005

Sample ID: 325554019 Matrix: Swipe

Collect Date: 08-MAY-13 13:14 Receive Date: 10-MAY-13

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method
Rad Liquid Scintil	llation Analysis						
LSC, Direct Tritiu	m, Filter "As Receiv	ed"					
Tritium	U	2.15	29.0	100	dpm/Filter	BYS1 05/11/13	1430 1301113 1
The following Ana	alytical Methods were	e performed:					
Method	Description				A	nalyst Comments	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 44T Project: TPMC00504 Sample ID: 325554020Client ID: TPMC005

Matrix: Swipe

Collect Date: 08-MAY-13 13:30 10-MAY-13 Receive Date: Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method
Rad Liquid Scintillation LSC, Direct Tritium, File	•	"					
Tritium	U	-9.58	32.2	100	dpm/Filter	BYS1 05/13/13	1427 1301113 1
The following Analytical	Methods were p	erformed:					
Method	Description				An	alvst Comments	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 61T Project: TPMC00504
Sample ID: 325554021 Client ID: TPMC005

Matrix: Swipe

Collect Date: 08-MAY-13 09:00
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method
Rad Liquid Scintillation	Analysis						
LSC, Direct Tritium, Fi	lter "As Receive	d"					
Tritium	U	-0.25	11.2	100	dpm/Filter	BYS1 05/11/13	1503 1301113 1
The following Analytica	al Methods were	performed:					
Method	Description				An	alvst Comments	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 83T Project: TPMC00504 Sample ID: 325554022 Client ID: TPMC005

Matrix: Swipe

Collect Date: 08-MAY-13 09:54 10-MAY-13 Receive Date: Collector: Client

Para	meter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method
	Liquid Scintillation	•						
Tritiu	, Direct Tritium, Fil m	U U	-4.51	23.0	100	dpm/Filter	BYS1 05/11/13	1519 1301113 1
The	following Analytica	l Methods were p	erformed:					
N.f d	1	D					1	

Description Method **Analyst Comments**

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 86T Project: TPMC00504 Sample ID: 325554023 Client ID: TPMC005

Matrix: Swipe

Collect Date: 08-MAY-13 10:17 10-MAY-13 Receive Date: Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method
Rad Liquid Scintillation	Analysis						
LSC, Direct Tritium, Fil	ter "As Receive	d"					
Tritium	U	7.20	20.7	100	dpm/Filter	BYS1 05/11/13	1536 1301113 1
The following Analytical	l Methods were	performed:					

Description Method **Analyst Comments**

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 31AB Project: TPMC00504
Sample ID: 325554024 Client ID: TPMC005

Sample ID: 325554024 Matrix: Swipe

Collect Date: 08-MAY-13 13:00 Receive Date: 10-MAY-13

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha	U	-0.038	0.492	0.500	dpm/Filter		AF1 0	05/11/13	1658	1301107	1
Beta	U	-0.221	1.07	2.00	dpm/Filter						
The following Analytica	l Methods were j	performed:									
Method	Description					Ana	lyst Con	nments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 35AB Project: TPMC00504
Sample ID: 325554025 Client ID: TPMC005

Sample ID: 325554025 Matrix: Swipe

Collect Date: 08-MAY-13 13:10 Receive Date: 10-MAY-13

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	e Batch l	Method
Rad Gas Flow Proportion	al Counting										
GFPC, Gross A/B, filter '	'As Received"										
Alpha		0.715	0.469	0.500	dpm/Filter		AF1 0	05/11/13	1658	1301107	1
Beta		1.03	0.761	2.00	dpm/Filter						
The following Analytical	Methods were p	erformed:									
Method I	Description					Ana	lyst Con	nments			
E (Rad Gas Flow Proportion GFPC, Gross A/B, filter ' Alpha Beta The following Analytical	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha Beta The following Analytical Methods were p	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.715 Beta 1.03 The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.715 0.469 Beta 1.03 0.761 The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.715 0.469 0.500 Beta 1.03 0.761 2.00 The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.715 0.469 0.500 dpm/Filter Beta 1.03 0.761 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.715 0.469 0.500 dpm/Filter Beta 1.03 0.761 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.715 0.469 0.500 dpm/Filter AF1 0 Beta 1.03 0.761 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.715 0.469 0.500 dpm/Filter AF1 05/11/13 Beta 1.03 0.761 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.715 0.469 0.500 dpm/Filter AF1 05/11/13 1658 Beta 1.03 0.761 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.715 0.469 0.500 dpm/Filter AF1 05/11/13 1658 1301107 Beta 1.03 0.761 2.00 dpm/Filter The following Analytical Methods were performed:

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 36AB Project: TPMC00504
Sample ID: 325554026 Client ID: TPMC005

Sample ID: 325554026 Matrix: Swipe

Collect Date: 08-MAY-13 13:12 Receive Date: 10-MAY-13

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst 1	Date	Time	Batch	Method
Rad Gas Flow Proportion	nal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha	U	-0.0377	0.499	0.500	dpm/Filter		AF1 05/1	11/13	1659 1	301107	1
Beta	U	0.290	0.560	2.00	dpm/Filter						
The following Analytica	l Methods were j	performed:									
Method	Description					Ana	lyst Comm	ents			
	Rad Gas Flow Proportion GFPC, Gross A/B, filter Alpha Beta The following Analytica	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U Beta U The following Analytical Methods were	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U -0.0377 Beta U 0.290 The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U -0.0377 0.499 Beta U 0.290 0.560 The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U -0.0377 0.499 0.500 Beta U 0.290 0.560 2.00 The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U -0.0377 0.499 0.500 dpm/Filter Beta U 0.290 0.560 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U -0.0377 0.499 0.500 dpm/Filter Beta U 0.290 0.560 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U -0.0377 0.499 0.500 dpm/Filter AF1 05/1 Beta U 0.290 0.560 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U -0.0377 0.499 0.500 dpm/Filter AF1 05/11/13 Beta U 0.290 0.560 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U -0.0377 0.499 0.500 dpm/Filter Beta U 0.290 0.560 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U -0.0377 Beta U 0.290 0.500 dpm/Filter AF1 05/11/13 1659 1301107 The following Analytical Methods were performed:

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

05/11/13 1659 1301107

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 38AB Project: TPMC00504
Sample ID: 325554027 Client ID: TPMC005

Sample ID: 325554027 Matrix: Swipe

Collect Date: 08-MAY-13 13:14
Receive Date: 10-MAY-13
Collector: Client

Parameter Qualifier Result DL RL Units DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting

GFPC, Gross A/B, filter "As Received"

Alpha 0.766 0.484 0.500 dpm/Filter

Beta 1.71 0.543 2.00 dpm/Filter

Beta 1.71 0.543 2.00 dpm/Filter

The following Analytical Methods were performed:

Method Description Analyst Comments

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 40AB Project: TPMC00504
Sample ID: 325554028 Client ID: TPMC005

Sample ID: 325554028 Matrix: Swipe

Collect Date: 08-MAY-13 13:18 Receive Date: 10-MAY-13

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units D	F A	nalyst	Date	Time	e Batch l	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha	U	0.156	0.473	0.500	dpm/Filter	Α	.F1 05	5/11/13	1659	1301107	1
Beta	U	0.434	0.466	2.00	dpm/Filter						
The following Analytica	al Methods were	performed:									
Method	Description					Analys	st Com	ments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 42AB Project: TPMC00504
Sample ID: 325554029 Client ID: TPMC005

Matrix: Swipe

Collect Date: 08-MAY-13 13:22
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units I	DF	Analyst	Date	Time	e Batch I	Method
Rad Gas Flow Proportio	nal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha	U	-0.05	0.495	0.500	dpm/Filter		AF1 (05/11/13	1659	1301107	1
Beta	U	0.359	0.538	2.00	dpm/Filter						
The following Analytica	l Methods were j	performed:									
Method	Description					Ana	lyst Con	nments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 44AB Project: TPMC00504
Sample ID: 325554030 Client ID: TPMC005

Matrix: Swipe

Collect Date: 08-MAY-13 13:30
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha		1.07	0.479	0.500	dpm/Filter		AF1 0	5/11/13	1700	1301107	1
Beta		3.83	0.559	2.00	dpm/Filter						
The following Analytica	l Methods were	performed:									
Method	Description					Ana	lyst Com	nments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 46AB Project: TPMC00504
Sample ID: 325554031 Client ID: TPMC005

Sample ID: 325554031 Matrix: Swipe

Collect Date: 08-MAY-13 13:35 Receive Date: 10-MAY-13

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	Batch M	Iethod
Rad Gas Flow Proportion	onal Counting										
GFPC, Gross A/B, filter	r "As Received"										
Alpha	U	0.324	0.486	0.500	dpm/Filter		AF1 (05/11/13	1700	1301107	1
Beta	U	0.576	0.779	2.00	dpm/Filter						
The following Analytica	al Methods were	performed:									
Method	Description					Ana	lyst Con	nments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 57AB Project: TPMC00504
Sample ID: 325554032 Client ID: TPMC005

Matrix: Swipe

Collect Date: 08-MAY-13 13:50
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	e Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Gross A/B, filter	r "As Received"										
Alpha	U	0.0701	0.482	0.500	dpm/Filter		AF1 0	05/11/13	1700	1301107	1
Beta		0.769	0.655	2.00	dpm/Filter						
The following Analytica	al Methods were	performed:									
Method	Description					Ana	lyst Con	nments			

1 EPA 900.0/SW846 9310/SM 7110B Modified

Page 34 of 85

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 59AB Project: TPMC00504
Sample ID: 325554033 Client ID: TPMC005

Sample ID: 325554033 Matrix: Swipe

Collect Date: 08-MAY-13 13:55 Receive Date: 10-MAY-13

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	e Batch	Method
Rad Gas Flow Proportion	nal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha	U	0.245	0.483	0.500	dpm/Filter		AF1 (05/11/13	1705	1301108	1
Beta	U	0.869	0.942	2.00	dpm/Filter						
The following Analytica	l Methods were j	performed:									
Method	Description					Ana	lyst Con	nments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 61AB Project: TPMC00504
Sample ID: 325554034 Client ID: TPMC005

Matrix: Swipe

Collect Date: 08-MAY-13 09:00
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analys	t Date	Tim	e Batch M	1 ethod
Rad Gas Flow Proportion	onal Counting										
GFPC, Gross A/B, filter	r "As Received"										
Alpha	U	0.0464	0.481	0.500	dpm/Filter		AF1	05/11/13	1705	1301108	1
Beta		0.894	0.881	2.00	dpm/Filter						
The following Analytical Methods were performed:											
Method	nod Description Analyst Comments										

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 66AB Project: TPMC00504
Sample ID: 325554035 Client ID: TPMC005

Matrix: Swipe

Collect Date: 08-MAY-13 09:14
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method			
Rad Gas Flow Proportio	nal Counting									
GFPC, Gross A/B, filter	"As Received"									
Alpha	U	-0.24	0.496	0.500	dpm/Filter	AF1 05/11/13	1705 1301108 1			
Beta	U	-0.232	0.694	2.00	dpm/Filter					
The following Analytical Methods were performed:										
Method	Description		Analyst Comments							

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 68AB Project: TPMC00504
Sample ID: 325554036 Client ID: TPMC005

Sample ID: 325554036 Matrix: Swipe

Collect Date: 08-MAY-13 00:17 Receive Date: 10-MAY-13

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method			
Rad Gas Flow Proporti	onal Counting									
GFPC, Gross A/B, filte	er "As Received"									
Alpha	U	0.259	0.499	0.500	dpm/Filter	AF1 05/12/13	1625 1301108 1			
Beta		0.892	0.696	2.00	dpm/Filter					
The following Analytical Methods were performed:										
Method	Description				A	nalyst Comments				

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 69AB Project: TPMC00504
Sample ID: 325554037 Client ID: TPMC005

Sample ID: 325554037 Matrix: Swipe

Collect Date: 08-MAY-13 09:20 Receive Date: 10-MAY-13

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	Batch	Method
Rad Gas Flow Proportion	nal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha	U	0.311	0.472	0.500	dpm/Filter		AF1 0	5/12/13	1626	1301108	1
Beta		0.860	0.596	2.00	dpm/Filter						
The following Analytical Methods were performed:											
Method	Description					Ana	lyst Com	ments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 72AB Project: TPMC00504
Sample ID: 325554038 Client ID: TPMC005

Sample ID: 325554 Matrix: Swipe

Collect Date: 08-MAY-13 09:29
Receive Date: 10-MAY-13
Collector: Client

Parameter	Oualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	Batch	Method
		1105011	DL	TCL .	Cints		7 mary 50	Dute	1 11110	Dateir	Wicthou
Rad Gas Flow Proportion	onal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha	U	0.347	0.477	0.500	dpm/Filter		AF1 0	5/12/13	1626	1301108	1
Beta		1.17	0.587	2.00	dpm/Filter						
The following Analytical Methods were performed:											
Method	Description					Ana	lyst Com	ments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 73AB Project: TPMC00504
Sample ID: 325554039 Client ID: TPMC005

Sample ID: 325554039 Matrix: Swipe

Collect Date: 08-MAY-13 09:33 Receive Date: 10-MAY-13

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	t Date	Time	Batch N	Method
Rad Gas Flow Proportion	nal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha	U	0.252	0.465	0.500	dpm/Filter		AF1 (05/12/13	1626	1301108	1
Beta		3.93	0.712	2.00	dpm/Filter						
The following Analytical Methods were performed:											
Method	Description					Ana	lyst Con	nments			
	Rad Gas Flow Proportion GFPC, Gross A/B, filter Alpha Beta The following Analytical	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U Beta The following Analytical Methods were I	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U 0.252 Beta 3.93 The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U 0.252 0.465 Beta 3.93 0.712 The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U 0.252 0.465 0.500 Beta 3.93 0.712 2.00 The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U 0.252 0.465 0.500 dpm/Filter Beta 3.93 0.712 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U 0.252 0.465 0.500 dpm/Filter Beta 3.93 0.712 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U 0.252 0.465 0.500 dpm/Filter AF1 0 Beta 3.93 0.712 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U 0.252 0.465 0.500 dpm/Filter AF1 05/12/13 Beta 3.93 0.712 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U 0.252 0.465 0.500 dpm/Filter AF1 05/12/13 1626 Beta 3.93 0.712 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U 0.252 0.465 0.500 dpm/Filter AF1 05/12/13 1626 1301108 Beta 3.93 0.712 2.00 dpm/Filter The following Analytical Methods were performed:

1 EPA 900.0/SW846 9310/SM 7110B Modified

Page 41 of 85

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 83AB Project: TPMC00504
Sample ID: 325554040 Client ID: TPMC005

Sample ID: 325554040 Matrix: Swipe

Collect Date: 08-MAY-13 09:54
Receive Date: 10-MAY-13
Collector: Client

Parameter Qualifier Result DL RL Units DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U 0.172 0.491 0.500 dpm/Filter 05/12/13 1626 1301108

Beta U 0.200 0.458 2.00 dpm/Filter

The following Analytical Methods were performed:

Method Description Analyst Comments

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 84AB Project: TPMC00504
Sample ID: 325554041 Client ID: TPMC005

Sample ID: 325554041 Matrix: Swipe

Collect Date: 08-MAY-13 10:13
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units Dl	F Aı	nalyst Date	Time I	Batch Me	thod
Rad Gas Flow Proportion	onal Counting									
GFPC, Gross A/B, filter	"As Received"									
Alpha	U	0.225	0.484	0.500	dpm/Filter	A	.F1 05/12/13	1626 130	01108	1
Beta		0.775	0.700	2.00	dpm/Filter					
The following Analytical Methods were performed:										
Method	Description					Analys	st Comments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 86AB Project: TPMC00504
Sample ID: 325554042 Client ID: TPMC005

Sample ID: 325554042 Matrix: Swipe

Collect Date: 08-MAY-13 10:17 Receive Date: 10-MAY-13

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha	U	0.272	0.488	0.500	dpm/Filter		AF1 05	5/12/13	1626	1301108	1
Beta	U	0.518	0.761	2.00	dpm/Filter						
The following Analytical Methods were performed:											
Method	Description					Ana	lyst Com	ments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 88AB Project: TPMC00504
Sample ID: 325554043 Client ID: TPMC005

Sample ID: 325554043 Matrix: Swipe

Collect Date: 08-MAY-13 10:31
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method		
Rad Gas Flow Proportion	onal Counting								
GFPC, Gross A/B, filter	r "As Received"								
Alpha	U	0.0846	0.487	0.500	dpm/Filter	AF1 05/12/13	1626 1301108 1		
Beta	U	0.149	0.789	2.00	dpm/Filter				
The following Analytical Methods were performed:									
Method	Description		Analyst Comments						

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 89AB Project: TPMC00504
Sample ID: 325554044 Client ID: TPMC005

Sample ID: 325554044 Matrix: Swipe

Collect Date: 08-MAY-13 10:42
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	Batch	Method
Rad Gas Flow Proportion	nal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha		0.619	0.480	0.500	dpm/Filter		AF1 0	5/12/13	1626	1301108	1
Beta		2.64	0.830	2.00	dpm/Filter						
The following Analytica	l Methods were j	performed:									
Method	Description				Ana	lyst Com	ments				

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 125T Project: TPMC00504
Sample ID: 325554045 Client ID: TPMC005

Matrix: Swipe

Collect Date: 09-MAY-13 08:59
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method	Į.
Rad Liquid Scintillation	,	111						-
LSC, Direct Tritium, Fil Tritium	ter "As Received U	1''' -1.09	48.9	100	dpm/Filter	BYS1 05/11/13	1552 1301113 1	
The following Analytica	l Methods were	performed:						
Method	Description				An	alyst Comments		_

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 135T Project: TPMC00504
Sample ID: 325554046 Client ID: TPMC005

Matrix: Swipe

Collect Date: 09-MAY-13 09:20 Receive Date: 10-MAY-13 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method
Rad Liquid Scintillation	Analysis						
LSC, Direct Tritium, Fil	ter "As Received	d"					
Tritium	U	-1.04	21.6	100	dpm/Filter	BYS1 05/11/13	1608 1301113 1
The following Analytica	Methods were	performed:					
3.6.4.1	D					1 0	

Method Description Analyst Comments

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 146T Project: TPMC00504 Client ID: TPMC005

Sample ID: 325554047 Matrix: Swipe

Collect Date: 09-MAY-13 09:45 10-MAY-13 Receive Date: Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method
-	d Scintillation Analysis ct Tritium, Filter "As Rec	eived"					
Tritium	U	-1.06	14.4	100	dpm/Filter	BYS1 05/11/13	1625 1301113 1
The follow	ring Analytical Methods v	were performed	l:				

Method Description **Analyst Comments**

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 92T Project: TPMC00504
Sample ID: 325554048 Client ID: TPMC005

Matrix: Swipe

Collect Date: 09-MAY-13 12:10
Receive Date: 10-MAY-13
Collector: Client

Parameter Qualifier Result DL RL Units DF Analyst Date Time Batch Method Rad Liquid Scintillation Analysis LSC, Direct Tritium, Filter "As Received" Tritium -1.77 22.8 100 dpm/Filter BYS1 05/11/13 1747 1301114 The following Analytical Methods were performed:

Method Description Analyst Comments

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 93T Project: TPMC00504 Client ID: TPMC005

Sample ID: 325554049

Matrix: Swipe

Collect Date: 09-MAY-13 12:12 10-MAY-13 Receive Date: Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method
Rad Liquid Scintillation LSC, Direct Tritium, Fi	J	1 "					
Tritium	U	-59.2	63.7	100	dpm/Filter	BYS1 05/13/13	1756 1301114 1
The following Analytica	al Methods were	performed:					
N.C. 4. 1.	D : .:					1	

Description Method **Analyst Comments**

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 92AB Project: TPMC00504
Sample ID: 325554050 Client ID: TPMC005

Matrix: Swipe

Collect Date: 09-MAY-13 12:10
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	e Batch	Method
Rad Gas Flow Proportio	nal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha		0.682	0.489	0.500	dpm/Filter		AF1 (05/12/13	1627	1301108	1
Beta		2.15	0.724	2.00	dpm/Filter						
The following Analytical	l Methods were j	performed:									
Method	Description					Ana	lyst Con	nments			
	Rad Gas Flow Proportio GFPC, Gross A/B, filter Alpha Beta The following Analytica	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha Beta The following Analytical Methods were p	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.682 Beta 2.15 The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.682 0.489 Beta 2.15 0.724 The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.682 0.489 0.500 Beta 2.15 0.724 2.00 The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.682 0.489 0.500 dpm/Filter Beta 2.15 0.724 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.682 0.489 0.500 dpm/Filter Beta 2.15 0.724 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.682 0.489 0.500 dpm/Filter AF1 0 Beta 2.15 0.724 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.682 0.489 0.500 dpm/Filter AF1 05/12/13 Beta 2.15 0.724 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.682 0.489 0.500 dpm/Filter Beta 2.15 0.724 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.682 0.489 0.500 dpm/Filter AF1 05/12/13 1627 1301108 Beta 2.15 0.724 2.00 dpm/Filter The following Analytical Methods were performed:

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 93AB Project: TPMC00504
Sample ID: 325554051 Client ID: TPMC005

Sample ID: 325554051 Matrix: Swipe

Collect Date: 09-MAY-13 12:12
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units D	ΟF	Analyst	Date	Time	e Batch N	Method
Rad Gas Flow Proporti	onal Counting										
GFPC, Gross A/B, filte	r "As Received"										
Alpha	U	0.0103	0.482	0.500	dpm/Filter		AF1 0	5/12/13	1627	1301108	1
Beta	U	0.649	1.00	2.00	dpm/Filter						
The following Analytic	al Methods were	performed:									
Method	Description					Ana	lyst Com	ments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 95AB Project: TPMC00504
Sample ID: 325554052 Client ID: TPMC005

Sample ID: 325554052 Matrix: Swipe

Collect Date: 09-MAY-13 12:20 Receive Date: 10-MAY-13

Collector: Client

rameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	e Batch	Method
d Gas Flow Proportion	al Counting										
FPC, Gross A/B, filter '	"As Received"										
oha		0.796	0.498	0.500	dpm/Filter		AF1 0	5/12/13	1627	1301108	1
a		1.88	0.694	2.00	dpm/Filter						
e following Analytical	Methods were p	erformed:									
ethod l	Description					Ana	lyst Com	ments			
0	d Gas Flow Proportion PPC, Gross A/B, filter that hat a e following Analytical	d Gas Flow Proportional Counting PC, Gross A/B, filter "As Received" ha a be following Analytical Methods were p	d Gas Flow Proportional Counting PC, Gross A/B, filter "As Received" ha 0.796 a 1.88 e following Analytical Methods were performed:	d Gas Flow Proportional Counting PC, Gross A/B, filter "As Received" ha 0.796 0.498 a 1.88 0.694 be following Analytical Methods were performed:	d Gas Flow Proportional Counting PC, Gross A/B, filter "As Received" ha 0.796 0.498 0.500 a 1.88 0.694 2.00 be following Analytical Methods were performed:	d Gas Flow Proportional Counting PC, Gross A/B, filter "As Received" ha 0.796 0.498 0.500 dpm/Filter a 1.88 0.694 2.00 dpm/Filter be following Analytical Methods were performed:	d Gas Flow Proportional Counting PC, Gross A/B, filter "As Received" ha 0.796 0.498 0.500 dpm/Filter a 1.88 0.694 2.00 dpm/Filter e following Analytical Methods were performed:	d Gas Flow Proportional Counting PC, Gross A/B, filter "As Received" ha 0.796 0.498 0.500 dpm/Filter AF1 0. a 1.88 0.694 2.00 dpm/Filter e following Analytical Methods were performed:	d Gas Flow Proportional Counting PC, Gross A/B, filter "As Received" ha 0.796 0.498 0.500 dpm/Filter AF1 05/12/13 a 1.88 0.694 2.00 dpm/Filter e following Analytical Methods were performed:	d Gas Flow Proportional Counting PC, Gross A/B, filter "As Received" ha 0.796 0.498 0.500 dpm/Filter AF1 05/12/13 1627 a 1.88 0.694 2.00 dpm/Filter e following Analytical Methods were performed:	d Gas Flow Proportional Counting PC, Gross A/B, filter "As Received" ha 0.796 0.498 0.500 dpm/Filter AF1 05/12/13 1627 1301108 a 1.88 0.694 2.00 dpm/Filter e following Analytical Methods were performed:

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 99AB Project: TPMC00504
Sample ID: 325554053 Client ID: TPMC005

Sample ID: 325554053 Matrix: Swipe

Collect Date: 09-MAY-13 12:30 Receive Date: 10-MAY-13 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DI	F Ana	lyst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting								
GFPC, Gross A/B, filter	"As Received"								
Alpha		0.660	0.494	0.500	dpm/Filter	AF1	05/12/13	1627 1301108	1
Beta		0.935	0.646	2.00	dpm/Filter				
The following Analytica	al Methods were	performed:							
Method	Description					Analyst C	Comments		

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 100AB Project: TPMC00504 Client ID: TPMC005

Sample ID: 325554054

Matrix: Swipe

Collect Date: 09-MAY-13 12:32 10-MAY-13 Receive Date: Collector: Client

Parameter	Qualifier	Result	DL	RL	Units I	DF	Analyst	Date	Time	Batch N	lethod
Rad Gas Flow Proportion	onal Counting										
GFPC, Gross A/B, filte	_										
Alpha		0.523	0.471	0.500	dpm/Filter		AF1 0	5/12/13	1627	1301108	1
Beta		0.934	0.633	2.00	dpm/Filter						
The following Analytics	al Methods were	performed:									
Method	Description					Ana	lyst Com	ments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 101AB Project: TPMC00504
Sample ID: 325554055 Client ID: TPMC005

Sample ID: 325554055 Matrix: Swipe

Collect Date: 09-MAY-13 12:34 Receive Date: 10-MAY-13

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	e Batch N	Method
Rad Gas Flow Proportion	nal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha	U	0.400	0.476	0.500	dpm/Filter		AF1 0	5/12/13	1627	1301108	1
Beta		1.16	1.04	2.00	dpm/Filter						
The following Analytica	l Methods were j	performed:									
Method	Description					Ana	lyst Com	ments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 102AB Project: TPMC00504
Sample ID: 325554056 Client ID: TPMC005

Matrix: Swipe

Collect Date: 09-MAY-13 12:38
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	e Batch M	I ethod
Rad Gas Flow Proportion	onal Counting										
GFPC, Gross A/B, filter	r "As Received"										
Alpha		0.494	0.474	0.500	dpm/Filter		AF1 (05/12/13	1627	1301108	1
Beta		0.590	0.547	2.00	dpm/Filter						
The following Analytica	al Methods were	performed:									
Method	Description					Ana	lyst Con	nments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 104AB Project: TPMC00504
Sample ID: 325554057 Client ID: TPMC005

Sample ID: 325554057 Matrix: Swipe

Collect Date: 09-MAY-13 12:45 Receive Date: 10-MAY-13

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analys	t Date	Tim	e Batch N	Method
Rad Gas Flow Proportio	nal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha	U	0.224	0.481	0.500	dpm/Filter		AF1	05/12/13	1627	1301108	1
Beta	U	0.0293	0.511	2.00	dpm/Filter						
The following Analytica	l Methods were j	performed:									
Method	Description					Ana	lyst Cor	nments			
							-				

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 111AB Project: TPMC00504
Sample ID: 325554058 Client ID: TPMC005

Sample ID: 325554058 Matrix: Swipe

Collect Date: 09-MAY-13 13:00 Receive Date: 10-MAY-13

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	Batch I	Method
Rad Gas Flow Proportio	nal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha		0.579	0.499	0.500	dpm/Filter		AF1 (05/12/13	2152	1301109	1
Beta		0.781	0.696	2.00	dpm/Filter						
The following Analytical	l Methods were p	erformed:									
Method	Description					Ana	lyst Con	nments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 119AB Project: TPMC00504
Sample ID: 325554059 Client ID: TPMC005

Sample ID: 325554059 Matrix: Swipe

Collect Date: 09-MAY-13 13:40
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	e Batch M	Iethod
Rad Gas Flow Proportion	onal Counting										
GFPC, Gross A/B, filter	r "As Received"										
Alpha		0.644	0.484	0.500	dpm/Filter		AF1 (05/12/13	2153	1301109	1
Beta		1.90	0.700	2.00	dpm/Filter						
The following Analytica	al Methods were	performed:									
Method	Description					Ana	alyst Con	nments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 121AB Project: TPMC00504
Sample ID: 325554060 Client ID: TPMC005

Sample ID: 325554060 Matrix: Swipe

Collect Date: 09-MAY-13 08:50
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	e Batch M	lethod
Rad Gas Flow Proportion	onal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha	U	0.281	0.490	0.500	dpm/Filter		AF1 0	5/12/13	2201	1301109	1
Beta	U	0.197	0.550	2.00	dpm/Filter						
The following Analytica	l Methods were j	performed:									
Method	Description					Ana	lyst Com	ments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 125AB Project: TPMC00504
Sample ID: 325554061 Client ID: TPMC005

Sample ID: 325554061 Matrix: Swipe

Collect Date: 09-MAY-13 08:59 Receive Date: 10-MAY-13

Collector: Client

Parameter	Oualifier	Result	DL	RL	Units	DF	Analyst	Date	Tim	e Batch l	Method
	1.0						1 11141) 50			- Buttin i	
Rad Gas Flow Proportion	nal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha	U	0.459	0.474	0.500	dpm/Filter		AF1	5/12/13	2211	1301109	1
Beta		0.591	0.547	2.00	dpm/Filter						
The following Analytical	l Methods were p	performed:									
Method	Description					Ana	lyst Con	ments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

TerranearPMC, LLC Company: Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 126AB Project: TPMC00504 Client ID: TPMC005

Sample ID: 325554062

Matrix: Swipe

Collect Date: 09-MAY-13 09:02 10-MAY-13 Receive Date: Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method
Rad Gas Flow Proporti	onal Counting						
GFPC, Gross A/B, filte	er "As Received"						
Alpha	U	0.257	0.471	0.500	dpm/Filter	AF1 05/14/13	1032 1301109 1
Beta	U	0.386	0.892	2.00	dpm/Filter		
The following Analytic	al Methods were	performed:					
Method	Description				Ar	nalyst Comments	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 128AB Project: TPMC00504
Sample ID: 325554063 Client ID: TPMC005

Sample ID: 325554 Matrix: Swipe

Collect Date: 09-MAY-13 09:08
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analys	t Date	Time	e Batch I	Method
Rad Gas Flow Proportio	nal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha		0.771	0.353	0.500	dpm/Filter		AF1	05/14/13	1032	1301109	1
Beta	U	0.472	0.761	2.00	dpm/Filter						
The following Analytica	l Methods were	performed:									
Method	Description					Ana	lyst Con	nments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 129AB Project: TPMC00504
Sample ID: 325554064 Client ID: TPMC005

Sample ID: 325554064 Matrix: Swipe

Collect Date: 09-MAY-13 09:10
Receive Date: 10-MAY-13

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	Batch	Method
Rad Gas Flow Proportio	nal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha	U	0.0476	0.484	0.500	dpm/Filter		AF1 (05/14/13	1034	1301109	1
Beta	U	0.374	0.799	2.00	dpm/Filter						
The following Analytical	l Methods were j	performed:									
Method	Description					Ana	lyst Con	nments			
	Rad Gas Flow Proportio GFPC, Gross A/B, filter Alpha Beta The following Analytica	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U Beta U The following Analytical Methods were	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U 0.0476 Beta U 0.374 The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U 0.0476 0.484 Beta U 0.374 0.799 The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U 0.0476 0.484 0.500 Beta U 0.374 0.799 2.00 The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U 0.0476 0.484 0.500 dpm/Filter Beta U 0.374 0.799 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U 0.0476 0.484 0.500 dpm/Filter Beta U 0.374 0.799 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U 0.0476 0.484 0.500 dpm/Filter AF1 0 Beta U 0.374 0.799 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U 0.0476 0.484 0.500 dpm/Filter AF1 05/14/13 Beta U 0.374 0.799 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U 0.0476 0.484 0.500 dpm/Filter AF1 05/14/13 1034 Beta U 0.374 0.799 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha U 0.0476 0.484 0.500 dpm/Filter AF1 05/14/13 1034 1301109 Beta U 0.374 0.799 2.00 dpm/Filter The following Analytical Methods were performed:

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 134AB Project: TPMC00504
Sample ID: 325554065 Client ID: TPMC005

Sample ID: 325554 Matrix: Swipe

Collect Date: 09-MAY-13 09:12
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method
Rad Gas Flow Proportion	onal Counting						
GFPC, Gross A/B, filte	r "As Received"						
Alpha	U	0.170	0.300	0.500	dpm/Filter	AF1 05/14/13	1034 1301109 1
Beta	U	-0.124	0.871	2.00	dpm/Filter		
The following Analytica	al Methods were	performed:					
Method	Description				A	Analyst Comments	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 140AB Project: TPMC00504
Sample ID: 325554066 Client ID: TPMC005

Sample ID: 325554066 Matrix: Swipe

Collect Date: 09-MAY-13 09:35
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst Date	Time Batch Method
Rad Gas Flow Proportion	onal Counting							
GFPC, Gross A/B, filter	r "As Received"							
Alpha	U	0.0611	0.404	0.500	dpm/Filter		AF1 05/14/13	1048 1301109 1
Beta	U	1.02	1.08	2.00	dpm/Filter			
The following Analytica	al Methods were	performed:						
Method	Description					Ana	lyst Comments	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 146AB Project: TPMC00504
Sample ID: 325554067 Client ID: TPMC005

Sample ID: 325554067 Matrix: Swipe

Matrix: Swipe Collect Date: 09-MAY-13 09:45

Receive Date: 10-MAY-13 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	Batch I	Method
Rad Gas Flow Proportion	nal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha		0.508	0.456	0.500	dpm/Filter		AF1 0	5/14/13	1048	1301109	1
Beta	U	0.680	0.976	2.00	dpm/Filter						
The following Analytical	Methods were p	performed:									
Method	Description					Ana	lyst Com	ments			
	Rad Gas Flow Proportion GFPC, Gross A/B, filter Alpha Beta The following Analytical	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha Beta U The following Analytical Methods were p	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.508 Beta U 0.680 The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.508 0.456 Beta U 0.680 0.976 The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.508 0.456 0.500 Beta U 0.680 0.976 2.00 The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.508 0.456 0.500 dpm/Filter Beta U 0.680 0.976 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.508 0.456 0.500 dpm/Filter Beta U 0.680 0.976 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.508 0.456 0.500 dpm/Filter AF1 0 Beta U 0.680 0.976 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.508 0.456 0.500 dpm/Filter AF1 05/14/13 Beta U 0.680 0.976 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.508 0.456 0.500 dpm/Filter Beta U 0.680 0.976 2.00 dpm/Filter The following Analytical Methods were performed:	Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 0.508 0.456 0.500 dpm/Filter Beta U 0.680 0.976 2.00 dpm/Filter The following Analytical Methods were performed:

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 147AB Project: TPMC00504
Sample ID: 325554068 Client ID: TPMC005

Sample ID: 3255540 Matrix: Swipe

Collect Date: 09-MAY-13 09:55 Receive Date: 10-MAY-13

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analys	t Date	Time	e Batch N	Method
Rad Gas Flow Proportion	nal Counting										
GFPC, Gross A/B, filter	"As Received"										
Alpha	U	0.0445	0.490	0.500	dpm/Filter		AF1	05/14/13	1048	1301109	1
Beta	U	0.354	0.550	2.00	dpm/Filter						
The following Analytica	l Methods were	performed:									
Method	Description					Ana	lyst Cor	nments			

1 EPA 900.0/SW846 9310/SM 7110B Modified

Page 70 of 85

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 150AB Project: TPMC00504
Sample ID: 325554069 Client ID: TPMC005

Sample ID: 325554069 Matrix: Swipe

Collect Date: 09-MAY-13 10:00
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method
Rad Gas Flow Proportion	onal Counting						
GFPC, Gross A/B, filter	"As Received"						
Alpha	U	0.275	0.450	0.500	dpm/Filter	AF1 05/14/13	1049 1301109 1
Beta	U	-0.0709	0.834	2.00	dpm/Filter		
The following Analytica	l Methods were	performed:					
Method	Description				An	alyst Comments	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 135AB Project: TPMC00504
Sample ID: 325554070 Client ID: TPMC005

Sample ID: 325554070 Matrix: Swipe

Collect Date: 09-MAY-13 09:20 Receive Date: 10-MAY-13 Collector: Client

Pa	arameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	e Batch	Method
Ra	ad Gas Flow Proportion	al Counting										
G	FPC, Gross A/B, filter "	'As Received"										
Al	pha		0.664	0.567	0.500	dpm/Filter		AF1 0:	5/13/13	0837	1301109	1
Be	eta		0.960	0.798	2.00	dpm/Filter						
Th	ne following Analytical	Methods were p	erformed:									
M	[ethod I	Description					Ana	lyst Com	ments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

TPMC00504

TPMC005

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 99T Project:
Sample ID: 325554071 Client ID:

Sample ID: 325554071 Matrix: Swipe

Collect Date: 09-MAY-13 12:30 Receive Date: 10-MAY-13 Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method
Rad Liquid Scintillation	•	J"					
LSC, Direct Tritium, Fi	U U	a 2.12	27.3	100	dpm/Filter	BYS1 05/11/13	1819 1301114 1
The following Analytica	al Methods were	performed:					
N.C. (1 1	D					1	

Method Description Analyst Comments

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 102T Project: TPMC00504
Sample ID: 325554072 Client ID: TPMC005

Matrix: Swipe

Collect Date: 09-MAY-13 12:38
Receive Date: 10-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method	l
Rad Liquid Scintillation LSC, Direct Tritium, Fi	•	d"						
Tritium	U	2.78	35.9	100	dpm/Filter	BYS1 05/11/13	1836 1301114 1	
The following Analytica	al Methods were	performed:						
Method	Description				Ar	nalyst Comments		_

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Client ID:

TPMC005

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 104T Project: TPMC00504

Sample ID: 325554073 Matrix: Swipe

Collect Date: 09-MAY-13 12:45 Receive Date: 10-MAY-13

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method
Rad Liquid Scintillation	Analysis						
LSC, Direct Tritium, Fil	lter "As Received	1"					
Tritium	U	9.13	27.1	100	dpm/Filter	BYS1 05/11/13	1852 1301114 1
The following Analytica	l Methods were	performed:					
Method	Description				An	alyst Comments	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 16, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 119T Project: TPMC00504 Sample ID: 325554074Client ID: TPMC005

Matrix: Swipe

Collect Date: 09-MAY-13 13:40 10-MAY-13 Receive Date: Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method
Rad Liquid Scintillation	•	a 11					
LSC, Direct Tritium, Fi	iter "As Receive		10.4	100	1 /511	D1/01 05/11/10	1000 1201114
Tritium	U	-0.31	13.4	100	dpm/Filter	BYS1 05/11/13	1908 1301114 1
The following Analytica	al Methods were	performed:					
Method	Description				Δn	alvet Comments	

Description

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: May 16, 2013

Page 1 of 2

TerranearPMC, LLC 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania

Contact: Daniel F. Caputo

Workorder: 325554

Parmname			NOM		Sample	Qual	QC	Units	RPD%	REC%	Range A	nlst	Date Time
Rad Gas Flow													
Batch 1301	107												
QC1202874317	325554007	DUP											
Alpha				U				dpm/Filter	0.00		N/A	AF1	05/14/13 20:18
Beta				U	0.402	U	0.0216	dpm/Filter	0.00		N/A		
QC1202874316	MB					TT	0.140	1 /E'14					05/11/12 17 00
Alpha						U		dpm/Filter					05/11/13 17:00
Beta Batch 1301	100					U	-0.278	dpm/Filter					
QC1202874319	325554033	DUP		T T	0.245	TT	0.200	J /E:14	0.00		NT/A	A T21	05/12/12 20-26
Alpha				U	0.245	U		dpm/Filter			N/A	АГІ	05/12/13 20:36
Beta	MB			U	0.869		0.688	dpm/Filter	23.2		(0% - 100%)		
QC1202874318 Alpha	MD					U	0.236	dpm/Filter					05/12/13 16:45
Beta						U		dpm/Filter					05/12/13 10:13
Batch 1301	109					C	0.10	apin/1 nter					
QC1202874321		DIID											
Alpha	323334036	DOI			0.579	U	0.122	dpm/Filter	130*		(0% - 100%)	AF1	05/13/13 10:14
Beta					0.781			dpm/Filter	189*		(0% - 100%)		00, 10, 10 10.11
QC1202874320	MB				0.701	C	0.0211	apin/1 inter			(070 10070)		
Alpha						U	0.0486	dpm/Filter					05/13/13 10:04
Beta						U	0.538	dpm/Filter					
Rad Liquid Scintillati													
Batch 1301	113												
QC1202874332	LCS												
Tritium			217				217	dpm/Filter		100	(75%-125%)	BYS1	05/11/13 16:57
QC1202874333	LCSD		017				202	1 /E'14	7.05	93.2	(00/ 200/)		05/11/12 17 14
Tritium QC1202874331	MB		217				202	dpm/Filter	7.03	93.2	(0%-20%)		05/11/13 17:14
Tritium	MD					U	0.671	dpm/Filter					05/11/13 16:41
Batch 1301	114						0.071	apina inter					00,11,10 10.11
QC1202874339	LCS												
Tritium	LCS		217				236	dpm/Filter		109	(75%-125%)	BYS1	05/11/13 20:30
QC1202874340	LCSD		•								, /		
Tritium			217				225	dpm/Filter	4.79	104	(0%-20%)		05/11/13 20:47
QC1202874338	MB												
Tritium						U	4.45	dpm/Filter					05/11/13 20:14

Notes:

The Qualifiers in this report are defined as follows:

** Analyte is a Tracer compound

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 2 of 2 **NOM** Sample Qual QC Units RPD% REC% Date Time **Parmname** Range Anlst

Result is less than value reported

325554

- > Result is greater than value reported
- BD Results are either below the MDC or tracer recovery is low
- FA Failed analysis.

Workorder:

- Analytical holding time was exceeded Η
- T Value is estimated
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- M if above MDC and less than LLD M
- M REMP Result > MDC/CL and < RDL
- N/A RPD or %Recovery limits do not apply.
- N1 See case narrative
- Analyte concentration is not detected above the detection limit ND
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- One or more quality control criteria have not been met. Refer to the applicable narrative or DER. Q
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- Gamma Spectroscopy--Uncertain identification UI
- Gamma Spectroscopy--Uncertain identification UJ
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ٨ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- Preparation or preservation holding time was exceeded h

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

GEL Laboratories LLC Form GEL-DER

DER Report No.: 1186608

Revision No.: 2

	DATA FXCEP	PTION REPORT						
	DATA EXCEI	TION KET OKT						
Mo.Day Yr. 16-MAY-13	Division: Radiochemistry	Quality Criteria: Specifications	Type: Process					
Instrument Type: LSC	Test / Method: GL-RAD-A-002	Matrix Type: Filter	Client Code: TPMC					
Batch ID: 1301114	Sample Numbers: See below	THE THE						
Potentially affected work order(s)(SDG): 325554,325564							
Application Issues:								
Result is more negative than the three	e sigma TPU							
Specification and Requirements Exception Description:		DER Disposition:						
Sample 325554049(Sievers–Sar activity that is greater than three tim TPU.	adberg USARC 93T) has a negative nes the absolute value of the 1-sigma	The sample was recounted for ver the negative activity. Reporting results	rification. The recount result confirms lts.					

Originator's Name:

Data Validator/Group Leader:

Lyndsey Pace 16-MAY-13

Jennifer Landingham 16-MAY-13

Jo 100 100 100 100 100 100 100 100 100 10		GEL Laboratories, LLC
CEL Chain of Custody and Analytical Request		2040 Savage Road
		Charleston, SC 29407
COC Number: 2005 N		Phone: (843) 556-8171 Fax: (843) 766-1178
6	Sample Analysis Requested (5) (Fill	(Fill in the number of containers for each test)
West 11400 Attack Bank		< Preservative Type (6)
sample be considered:	istinos al/s	1
1	VI OTAN	Comments Note: extra sample is
Sample ID (military) (mun leson heart Lier	required for sample specific QC
211.29 5-7-13 WWA P 6	X X X	* refer to
Simon Southern BSARC 1AB, 7AB, 13 AB, 15AB, 16AB 17AB 5-7-13 W WA P	× ×	Sundle
W WA P	X	Labela
5-8-13 N MAP	*	In time
MB 58-13 N WAP	×	' collected
3 N NA P	X	
87348 5818 N NA P	9 x	
1 South 45 HR (8348, 8448, 8848, 8848, 58-13 N NA P	× 5	
TAT Requested: Normal: 7 Rush: Specify: (Subject to Surcharge) Fax Results: Yes / No	Circle Deliverable: C of A / QC Summary	mary / Level 1 / Level 2 / Level 3 / Level 4
		Sample Collection Time Zone Esstern Pacific
Sampling the senty exercise conditions		. : .
Chain of Custody	Sample Shippi	Sample Shipping and Delivery Details
Relinquished By (Signed) Date Time Received by (signed) Date Time GEL PM:	PM: Heather Shallon	
1 persus 5-9-13 3:25 TITH U X 15/013 10,0905 Methodo	Method of Shipment: Feelow	Date Shipped: 5-9-13
2 Airbill #:	8757 2652	4971
3 Airbill #:	**	
1.) Chain of Custody Number = Client Determined 2.) Chain of Custody Number = Client Determined 3.) Of Chase. N = Normal Samula TR = Trin Rlank FD = Field Duniticate EB = Fourment Rlank MS = Marrix Snike Samula MSD = Marrix Snike Duniticate Samule. G = Grab. C = Commonite	ole. G = Grab. C = Composite	For Lab Receiving Use Only
2.) Codes, it is required sample, to the brains of the bra		Cysterly Seal Intact?

WHITE = LABORATORY

5.) Sample Analysis Requested: Analytical method requested (i.e. 8260B. 6010B/7470A.) and number of containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1).

PINK = CLIENT

6.) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH = Sodium Hydroxide, SA = Sulfuric Acid, AA = Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank

Cystody Seal Intact?
(YES) NO
Cooler Temp:

YELLOW = FILE

4.) Matrix Codes: DW=Drinking Water, GW=Groundwater, SW=Surface Water, WW=Water, W=Water, SO=Soil, SD=Sediment, SL=Sludge, SS=Solid Waste. O=Oil, F=Filter, P=Wipe, U=Urine, F=Fecal, N=Nasal

	4	GEL Laboratories, LLC
OEL CHAIN OF	Custouy and Analytical Kequest	2040 Savage Road
COC Number: 342 GEL Work Order Number: 335594		Eax: (843) 756-1178
Client Name: Yerranean PMC Phone #: 215 586-1092	Sample Analysis Requested (5) (F	(Fill in the number of containers for each test)
45 HRC/NIFax#i		< Preservative Type (6)
	Sample be considered:	
Send Results To: K sheeff files	T	Comments Note: extra sample is
Sample ID omposites - indicate start and stop date/time (mm-dd-yy)	Total numl	required for sample specific QC
N W4 P	<u> </u>	* Let to Sind
Sivery Sandberg USARL 92 AB, 93 AB, 98 AB, 100 AB, 101 AB	<i>∞</i> ××	labele for time
Siner Salberg USARCHORDINAB/11/AB 5-9-13 N WA F	* *	Meted
	X	
Siever Send Soul SAR (13418) 14018, 1	×	
Siever - Sandbury 45/18C 97, 1027, 1047, 1197 5-9-13 NWA P	X	
TAT Requested: Normal: Rush: Specify: (Subject to Surcharge) Fax Results: Yes / No	lo Circle Deliverable: C of A / QC Summary	ummary / Level 1 / Level 2 / Level 3 / Level 4
,		Sample Collection Time Zone
Somplery to worth graund conditions		. <u>.</u>
Chain of Custody	Sample Ship	Sample Shipping and Delivery Details
Received by (signed)	GEL PM: Heather Sheff	J
1 pessan 59-13 5:25 11 / (10) 05/013 0405	Method of Shipment: Feelox	Date Shipped: 5-9-13
2 2	Airbill #: 8757 2652	49 71
3	Airbill #:	
1.) Chain of Custody Number = Client Determined 2.) OC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Solike Sample, MSD = Matrix Solike Duplicate Sample, G = Grab, C = Composite	licate Sample, $G = Grab$, $C = Composite$	For Lab Receiving Use Only

3.) Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered.

4.) Matrix Codes: DW-Drinking Water, GW-Groundwater, SW-Surface Water, WW-Water Water, W-Water, SO-Soil, SD-Sediment, SL-Sludge, SS-Soild Waste, O-Oil, F-Filter, P-Wipe, U-Urine, F-Fecal, N-Nasal 5.) Sample Analysis Requested: Analytical method requested (i.e. 8260B, 6010B/7470A) and number of containers provided for each (i.e. 8260B - 3, 6010B/7470A - 1).

6.) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SI = Sodium Hydroxide, SA = Sulfuric Acid, AA = Ascorbic Acid, HX = Hexane, ST = Sodium Thiosulfate, If no preservative is added = leave field blank YELLOW = FILE WHITE = LABORATORY

PINK = CLIENT

Custody Seal Intact?

GEL	Laboratories LLC
-----	------------------

SAMPLE RECEIPT & REVIEW FORM

305554

Clie	ent: TPMC			SDO	G/AR/COC/Work Order: Sievers-Sandberg USARC (NJO13)
Rec	eived By:		·	Dat	e Received: 05 013
Sus	pected Hazard Information	Yes	S _o		Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further estigation.
	C/Samples marked as radioactive?		Z		ximum Net Counts Observed* (Observed Counts - Area Background Counts):
	ssified Radioactive II or III by RSO?		4	If ye	es, Were swipes taken of sample contatiners < action levels?
	C/Samples marked containing PCBs? kage, COC, and/or Samples marked as		/	_	
	Allium or asbestos containing?	j	/	If ve	es, samples are to be segregeated as Safety Controlled Samples, and opened by the GEL Safety Group.
	oped as a DOT Hazardous?		$\overline{}$		ard Class Shipped: UN#:
Sam	pples identified as Foreign Soil?		7	1	
	Sample Receipt Criteria	Yes	NA	Š	Comments/Qualifiers (Required for Non-Conforming Items)
1	Shipping containers received intact and sealed?	/			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
2	Samples requiring cold preservatio within $(0 \le 6 \text{ deg. C})$?*	n	/		Preservation Method: Ice bags Blue ice Dry ice None Other (describe) *all temperatures are recorded in Celsius
2a	Daily check performed and passed of IR temperature gun?	on /			Temperature Device Serial #: () S D () Secondary Temperature Device Serial # (If Applicable):
3	Chain of custody documents include with shipment?	ed	·		
4	Sample containers intact and sealed	? /			Circle Applicable: Seals broken Damaged container Leaking container Other (describe)
5	Samples requiring chemical preservation at proper pH?			-	Sample ID's, containers affected and observed pH: If Preservation added, Lot#:
6	VOA vials free of headspace (define as < 6mm bubble)?	ed	/		Sample ID's and containers affected:
7	Are Encore containers present?				(If yes, immediately deliver to Volatiles laboratory)
8	Samples received within holding time?				ID's and tests affected:
9	Sample ID's on COC match ID's on bottles?	/			Sample ID's and containers affected:
10	Date & time on COC match date & time on bottles?				Sample ID's affected: 10 +100 00000
11	Number of containers received mate number indicated on COC?	h		/	sample ID's affected: RCCIVCO a tritium and Gross Alo for ID TT 1445
12	Are sample containers identifiable a GEL provided?	š /			
13	COC form is properly signed in relinquished/received sections?				
14	Carrier and tracking number.				Circle Applicable: FedEx Air FedEx Ground UPS Field Services Courier Other 8050 2052 4906
Com	ments (Use Continuation Form if neede	d):			
	Page 82 of 8	5 reviev	v: Init	tials	05 Date 5 10 13 Page 1 of 2

GEL Laboratories LLC SAMPLE RECEIPT & REVIEW CONTINUATION FORM

Client: TPMC Received	By: 11 Date Received: 5	SDG/AR/COC/Work Order:	325554
Sievers Sando	erri		
71 1415	JAB 1425	83 AB 954 73	AB OB3
13 1440	7	84 1013 73	
15 4453 148	13 1440	86 1017	
17 1452	16 1448		55AB OPEC
21 1459	16 1450	89 1042	
29 1515	17 1452	192 1210	
35 1310	18 45 1454	93 1212	
38 1314	21 1459	95 1220	
44 -1320	24 1506	99 1230	***************************************
61 0900	29 1515	100 1232	
83 0954	30 1518	101 1234	
86 1017	31 1300	107 1238	
125 0951 135 0920		111 1300	
146 0945	36 1312 38 1314	119 121-10	
92 1310	40 1318	121 0850	
93 1212	42 1322	125 0059	
99 1230.	44 [330	126 0902	
102 1238	46 1335	128 0908	
104 1245	57 1350	129 0910	
119 1340	59 1355	134 0912	
	Les 0900	140 0935	
CARROLL.	ldo 0914	146 0945	
13T 1141	68 017	1470165	
15 1149	69 0920	150 1000	
19 1159	72 0924		,
9AB 1135 154B	1149 MM CAR	<u> </u>	
11AB 1138 16	1151 21 A	3 1263 4AB 1130	
13AB 1141 17	1153 25	1215	
HAB 1146 19	1159 14		
PM (or PMA) revie	our Initials	5/10/13 Page 2 of	

Subject: Re: TPMC samples received today 5/10/13

From: Joe<jgreen@terranearpmc.com>

Date: 5/10/2013 1:16 PM

To: "Heather Shaffer" < Heather. Shaffer@gel.com>, kshroff@TerranearPMC.com

CC: "team.shaffer"<team.shaffer@gel.com>

The swipe should be 7AB for GAB and tritium bottle should be 7T Thanks
Joe

Sent from my Verizon Wireless Droid

----Original message-----

From: Heather Shaffer < Heather. Shaffer@gel.com>

To: kshroff@TerranearPMC.com, JGreen@TerranearPMC.com

Cc: "team.shaffer" <team.shaffer@gel.com>
Sent: Fri, May 10, 2013 16:42:42 GMT+00:00
Subject: Re: TPMC samples received today 5/10/13

We did not receive a GAB filter for 7AB. I believe that the GAB filter labeled as 7T should really be 7AB. Thank you.

On 5/10/2013 12:23 PM, Heather Shaffer wrote:

Good afternoon,

We received samples today and I have one discrepancy. For Sievers Sandberg ID 7T (collection time 14:45) we received a tritium container and a GAB. Please confirm if only tritium should be run on this sample or if GAB is also required.

Thank you, Heather

Heather Shaffer
Project Manager
GEL Laboratories, LLC
2040 Savage Road
Charleston, SC (USA) 29407
Direct: 843.769.7386
Main: 843.766.8171 xt 4505
Fax: 843.766.1178
E-mail: heather.shaffer@gel.comWeb: www.gel.com

CONFIDENTIALITY NOTICE: This e-mail and any files transmitted with it are the property of The GEL Group, Inc. and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipient(s) named above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files transmitted with it is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately and delete the original message and any files transmitted. The unauthorized use of this e-mail or any files transmitted with it is prohibited and disclaimed by The GEL Group, Inc. and its affiliates.

CONFIDENTIALITY NOTICE:

This E-Mail is intended only for the use of the individual or entity to which it is addressed and may contain information that is privileged, confidential and exempt from disclosure under applicable law. If you have received this communication in error, please do not distribute and delete the original message. Please notify the sender by E-Mail at the address shown. Thank you for your compliance.

List of current GEL Certifications as of 16 May 2013

State	Certification
Alaska	UST-110
Arkansas	88-0651
CLIA	42D0904046
California NELAP	01151CA
Colorado	SC00012
Connecticut	PH-0169
Delaware	SC00012
DoD ELAP A2LA ISO 17025	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-12-00283, P330-12-00284
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky	90129
Louisiana NELAP	03046 (AI33904)
Louisiana SDWA	LA130005
Maryland	270
Massachusetts	M-SC012
Nevada	SC000122011-1
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
Oklahoma	9904
Pennsylvania NELAP	68-00485
Plant Material Permit	PDEP-12-00260
South Carolina Chemistry	10120001
South Carolina Radiochemi	10120002
Tennessee	TN 02934
Texas NELAP	T104704235-13-8
Utah NELAP	SC000122013-8
Vermont	VT87156
Virginia NELAP	460202
Washington	C780-12
Wisconsin	999887790

a member of The GEL Group INC

PO Box 30712 Charleston, SC 29417 2040 Savage Road Charleston, SC 29407

P 843.556.8171 F 843.766.1178

www.gel.com

May 28, 2013

Daniel F. Caputo TerranearPMC, LLC 222 Valley Creek Blvd. Suite 210 Exton, Pennsylvania 19341

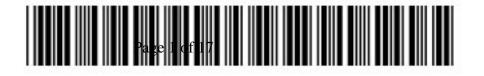
Re: TerranearPMC, LLC (Project No. 46142) Sievers-Sandberg USARC (NJ013)

Work Order: 326162

Dear Daniel Caputo:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on May 22, 2013. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4505.


Sincerely,

Heather Shaffer

Neatter Shaffer

Project Manager

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

TPMC005 TerranearPMC, LLC (Project No. 46142) Client SDG: 326162 GEL Work Order: 326162

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Heather Shaffer.

	Deather Shaffer	
Reviewed by		

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 28, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 151T Project: TPMC00504
Sample ID: 326162001 Client ID: TPMC005

Sample ID: 326162001 Matrix: Swipe

Collect Date: 21-MAY-13 09:33
Receive Date: 22-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units 1	DF	Analyst	t Date	Time Bate	h Method
Rad Liquid Scintilla	•									
LSC, Direct Tritium	, Filter "As Receive	ed"								
Tritium	U	0.00	14.2	100	dpm/Filter		BYS1 (05/23/13	2043 130359	0 1
The following Analy	rtical Methods were	e performed:								
Method	Description					Ana	lyst Con	nments		

1 GL-RAD-A-002

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 28, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 152T Project: TPMC00504 Sample ID: 326162002 Client ID: TPMC005

Matrix: Swipe

Collect Date: 21-MAY-13 09:35
Receive Date: 22-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method	
Rad Liquid Scintillation LSC, Direct Tritium, Fil	•	d"						
Tritium	U	0.913	12.3	100	dpm/Filter	BYS1 05/23/13	2100 1303590 1	
The following Analytica	l Methods were j	performed:						
Method	Description				Ar	nalyst Comments		

1 GL-RAD-A-002

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 28, 2013

Time Batch Method

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Result

Client Sample ID: Sievers-Sandberg USARC 153T Project: TPMC00504
Sample ID: 326162003 Client ID: TPMC005

Sample ID: 326162003 Matrix: Swipe

Collect Date: 21-MAY-13 10:22
Receive Date: 22-MAY-13
Collector: Client

Rad Liquid Scintillation Analysis

Parameter

LSC, Direct Tritium, Filter "As Received"

Tritium U -15.1 68.1 100 dpm/Filter BYS1 05/23/13 2116 1303590 1

RL

Units

DF

Analyst Date

The following Analytical Methods were performed:

Qualifier

Method Description Analyst Comments

DL

1 GL-RAD-A-002

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 28, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 151AB Project: TPMC00504
Sample ID: 326162004 Client ID: TPMC005

Sample ID: 326162004 Matrix: Swipe

Collect Date: 21-MAY-13 09:33 Receive Date: 22-MAY-13

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method
Rad Gas Flow Proportion	nal Counting						
GFPC, Gross A/B, filter	"As Received"						
Alpha		5.44	0.429	0.500	dpm/Filter	JXR1 05/23/13	1317 1303535 1
Beta		8.82	1.14	2.00	dpm/Filter		
The following Analytica	l Methods were	performed:					
Method	Description				Α	analyst Comments	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 28, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 152AB Project: TPMC00504
Sample ID: 326162005 Client ID: TPMC005

Sample ID: 326162005 Matrix: Swipe

Collector:

Collect Date: 21-MAY-13 09:35 Receive Date: 22-MAY-13

Client

Parameter Qualifier Result DL RL Units DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting GFPC, Gross A/B, filter "As Received" Alpha 4.59 0.455 0.500 dpm/Filter JXR1 05/23/13 1317 1303535 Beta 7.07 1.13 2.00 dpm/Filter The following Analytical Methods were performed: Method Description **Analyst Comments**

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 28, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 153AB Project: TPMC00504
Sample ID: 326162006 Client ID: TPMC005

Sample ID: 3261620 Matrix: Swipe

Collect Date: 21-MAY-13 10:28
Receive Date: 22-MAY-13
Collector: Client

Parameter	Qualifier	Result	DL	RL	Units D	F	Analyst	Date	Time	Batch I	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Gross A/B, filte	_										
Alpha	U	0.159	0.477	0.500	dpm/Filter		JXR1 05	5/23/13	1317	1303535	1
Beta	U	0.134	0.965	2.00	dpm/Filter						
The following Analytica	al Methods were	performed:									
Method	Description					Anal	yst Com	ments			

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 28, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 154AB Project: TPMC00504
Sample ID: 326162007 Client ID: TPMC005

Sample ID: 326162007 Matrix: Swipe

Collect Date: 21-MAY-13 10:32 Receive Date: 22-MAY-13

Collector: Client

Parameter	Qualifier	Result	DL	RL	Units DF	Analyst Date	Time Batch Method
Rad Gas Flow Proportion	nal Counting						
GFPC, Gross A/B, filter	"As Received"						
Alpha		0.439	0.390	0.500	dpm/Filter	JXR1 05/23/13	1343 1303535 1
Beta	U	0.682	0.802	2.00	dpm/Filter		
The following Analytica	l Methods were j	performed:					
Method	Description				An	alyst Comments	
						•	·

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: May 28, 2013

Company: TerranearPMC, LLC Address: 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania 19341

Contact: Daniel F. Caputo

Project: TerranearPMC, LLC (Project No. 46142)Sievers-Sandberg USARC (NJ013)

Client Sample ID: Sievers-Sandberg USARC 155AB Project: TPMC00504
Sample ID: 326162008 Client ID: TPMC005

Sample ID: 326162008 Matrix: Swipe

Collect Date: 21-MAY-13 10:35 Receive Date: 22-MAY-13

Collector: Client

I	Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	Batch	Method
]	Rad Gas Flow Proportion	al Counting										
(GFPC, Gross A/B, filter '	"As Received"										
1	Alpha		0.650	0.493	0.500	dpm/Filter		JXR1 05	5/23/13	1316	1303535	1
1	Beta		1.93	0.991	2.00	dpm/Filter						
7	The following Analytical	Methods were p	erformed:									
1	Method I	Description					Ana	lyst Com	ments			

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: May 28, 2013

Page 1 of 2

TerranearPMC, LLC 222 Valley Creek Blvd.

Suite 210

Exton, Pennsylvania

Contact: Daniel F. Caputo

Workorder: 326162

Parmname		NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date	Time
Rad Gas Flow Batch 13035	535											
QC1202880498 3 Alpha	226162004 DUP		5.44		4.75	dpm/Filter	13.5		(0%-20%)	JXR1	05/23/1	3 15:03
Beta			8.82		8.71	dpm/Filter	1.24		(0%-20%)			
QC1202880497 Alpha	MB			U	-0.0218	dpm/Filter					05/23/1	3 13:43
Beta				U	0.0221	dpm/Filter						
Rad Liquid Scintillation Batch 13035												
QC1202880620 Tritium	LCS	216			227	dpm/Filter		105	(75%-125%)	BYS1	05/23/1	3 21:49
QC1202880621 Tritium	LCSD	216			180	dpm/Filter	23.4*	83	(0%-20%)		05/23/1	3 22:05
QC1202880619 Tritium	MB			U	0.00	dpm/Filter					05/23/1	3 21:32

Notes:

The Qualifiers in this report are defined as follows:

- ** Analyte is a Tracer compound
- < Result is less than value reported
- > Result is greater than value reported
- BD Results are either below the MDC or tracer recovery is low
- FA Failed analysis.
- H Analytical holding time was exceeded
- J Value is estimated
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- M M if above MDC and less than LLD
- M REMP Result > MDC/CL and < RDL
- N/A RPD or %Recovery limits do not apply.

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 2 of 2

Parmname	NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
N1 See case parrative									

326162

Workorder:

- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- One or more quality control criteria have not been met. Refer to the applicable narrative or DER. Q
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- UJ Gamma Spectroscopy--Uncertain identification
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ٨ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- Preparation or preservation holding time was exceeded h

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

* Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

[^] The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

There are no "Data Exception Reports" associated with this analytical report.

·O
Q
•
Q
8
0

			GEL Laboratories, LLC
76174.	GEL Chain of Custody and Analytical Request	Analytical Kequest	2040 Savage Road
GEL Quote #:		ı	Charleston, SC 29407
COC Number (1) GEL Wo	GEL Work Order Number:		Phone: (843) 556-8171
\			Fax: (843) /66-11/8
Cilent Name: Janamed PMC	Phone #: 215 596-1092	Sample Analysis Requested (5) (Fill	(Fill in the number of containers for each test)
~	Leng USARC (NIUISA#:		< Preservative Type (6)
		sample be considered: contained	
Collected by: Send Resu	Send Results To: 1 Shaff	1	Comments Note: extra sample is
Sample ID	• Time Collected QC Code Field Sample (Military) (2) Filtered (3) Matrix (4)	ilioaciive N Regula mun Isa	required for sample specific QC
	(hhmm) (hmmm) (ci i i i i i i i i i i i i i i i i i i	or (7 " "
Never Sandbergh Mill 121, 1521, 1531	5-11-13 N WH	X	X refler to some
Surew-Southey USARC 131AB, 157AB, 159AB	18 5/21-13 N NA P	X	label for time
Sizzer Some Jan 115ARC 154AB, 155MG	8 5-21-13 M/N B	2 ×	Alected
,	l		
TAT Requested: Normal: 7 Rush: Specify:		No Circle Deliverable: C of A / OC Summary	mmary / Level 1 / Level 2 / Level 3 / Level 4
Remarks: Are there any known hazards applicable to these samples? If so, please list the hazards			Sample Collection Time Zone
Sempling to verily existing conditions	, conditions		ا. ١
			Mountain
		Sample Shipp	Sample Shipping and Delivery Details
Relinquished By (Signed) Date Time	Received by (signed) Date Time	GEL PM: Houter Shaffer	
1 Ly lie 5-21-13 1:35 PM	11 T. Hent 5-22-13 04:35	Method of Shipment: K. C.	Date Shipped: 5-21-13
2	2	Airbill #: 8005 4737	1548
3	3	Airbill #:	
1.) Chain of Custody Number = Client Determined		Transferred to the control of the co	For Lah Receiving I lee Only
2) OC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Snike Sample, MSD = Matrix Snike Duplicate Sample, G = Grab, C = Composite	B = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Du	Juplicate Sample, G = Grab, C = Composite	LOT Lab Acceiving Use Unity

- - 3.) Field Filtered: For liquid matrices, indicate with a Y for yes the sample was field filtered or N for sample was not field filtered.
- 4.) Matrix Codes: DW-Drinking Water, GW-Groundwater, SW-Surface Water, WW-Water, W-Water, W-Water, SO-Soil, SD-Sediment, SL-Sludge, SS-Soild Waste, O-Oil, F-Filter, P-Wipe, U-Urine, F-Fecal, N-Nasal
- Sample Analysis Requested: Analytical method requested (i.e. 82608, 60108/74704 1).
 Preservative Type: Ha = Hydrochloric Acid. SN = Nitric Acid. SN = Sulfuric Acid. AA = Ascorbic Acid, HX = Hexane. ST = Sodium Thiosulfate. If no preservative is added = leave field blank
 WHITE = LABORATORY

 YELLOW = FILE
 PINK = CLIENT

Custody Seal Intact? YES NO Coolet Temp.

GEL	Laboratories LLC
-----	------------------

SAMPLE RECEIPT & REVIEW FORM

d By: P. Went					
			SDG/AR/COC/Work Order: 326/62 Date Received: 0522/3		
ed Hazard Information	Yes	oN -		*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.	
mples marked as radioactive?				Maximum Net Counts Observed* (Observed Counts - Area Background Counts): O CPM	
ed Radioactive II or III by RSO?		X	If ye	f yes, Were swipes taken of sample contatiners < action levels?	
mples marked containing PCBs? , COC, and/or Samples marked as				·	
n or asbestos containing?		X	If ye	s, samples are to be segregeated as Safety Controlled Samples, and opened by the GEL Safety Group.	
as a DOT Hazardous?		X.	Haza	ard Class Shipped: UN#:	
identified as Foreign Soil?		Δ			
Sample Receipt Criteria	Yes	NA	No	Comments/Qualifiers (Required for Non-Conforming Items) Circle Applicable:	
ipping containers received intact is sealed?	X	4 2	. 2	Seals broken Damaged container Leaking container Other (describe)	
amples requiring cold preservation within $(0 \le 6 \text{ deg. C})$?*	奖	X		Preservation Method: Ice bags Blue ice Dry ice None Other (describe) *all temperatures are recorded in Celsius	
ily check performed and passed on temperature gun?	Χ			Temperature Device Serial #: Secondary Temperature Device Serial # (If Applicable): 6/524649	
ain of custody documents included h shipment?	X				
mple containers intact and sealed?	X			Circle Applicable: - Seals broken Damaged container Leaking container Other (describe)	
nples requiring chemical servation at proper pH?		X		Sample ID's, containers affected and observed pH: If Preservation added, Lot#:	
OA vials free of headspace (defined < 6mm bubble)?		X		Sample ID's and containers affected:	
e Encore containers present?			X	(If yes, immediately deliver to Volatiles laboratory)	
mples received within holding e?	X			ID's and tests affected:	
nple ID's on COC match ID's on tles?	X			Sample ID's and containers affected:	
te & time on COC match date & e on bottles?			V	Sample ID's affected: NO TIME ON Chain	
mber of containers received match nber indicated on COC?	Х			Sample ID's affected:	
sample containers identifiable as L provided?			X	Vients	
C form is properly signed in nquished/received sections?	Χ				
rier and tracking number.	X			Circle Applicable: FedEx Air FedEx Ground UPS Field Services Courier Other 8005 4737 9451	
ts (Use Continuation Form if needed):					
Page, 15 of 17				Date 052313 Page 1 of 2	
	e on bottles? mber of containers received match aber indicated on COC? sample containers identifiable as L provided? C form is properly signed in aquished/received sections? rier and tracking number.	mber of containers received match aber indicated on COC? sample containers identifiable as L provided? C form is properly signed in equished/received sections? X rier and tracking number.	mber of containers received match aber indicated on COC? sample containers identifiable as L provided? C form is properly signed in aquished/received sections? X rier and tracking number.	e on bottles? mber of containers received match ober indicated on COC? sample containers identifiable as L provided? C form is properly signed in equished/received sections?	

GEL	Laboratories LLC	SAMPLE RECEIPT &	REVIEW	CON
-----	------------------	------------------	--------	-----

Client: TPMC Received	By: P. DENT Date Receiv	ed: <u>5 · 22 · /3 </u>	/AR/COC/Work Order: <u>32616</u> 2
ID	DATE	TIME	
151 A1B	5-21-13	09:33	
152 "	5.21.13	09:35	
153"	5-21-13	10:28	
154"	5.21-13	10:32	
1551	5-21-13	10:35	
151T	5-21-13	04:33	
152T	5-21-13	09:35	
153T	5.21-13	10:22	
	~		
PM (or PMA) revie	w: Initials	Date 052313	Page Zof

Page 16 of 17

List of current GEL Certifications as of 28 May 2013

State	Certification			
Alaska	UST-110			
Arkansas	88-0651			
CLIA	42D0904046			
California NELAP	01151CA			
Colorado	SC00012			
Connecticut	PH-0169			
Delaware	SC00012			
DoD ELAP A2LA ISO 17025	2567.01			
Florida NELAP	E87156			
Foreign Soils Permit	P330-12-00283, P330-12-00284			
Georgia	SC00012			
Georgia SDWA	967			
Hawaii	SC00012			
Idaho	SC00012			
Illinois NELAP	200029			
Indiana	C-SC-01			
Kansas NELAP	E-10332			
Kentucky	90129			
Louisiana NELAP	03046 (AI33904)			
Louisiana SDWA	LA130005			
Maryland	270			
Massachusetts	M-SC012			
Nevada	SC000122011-1			
New Hampshire NELAP	2054			
New Jersey NELAP	SC002			
New Mexico	SC00012			
New York NELAP	11501			
North Carolina	233			
North Carolina SDWA	45709			
Oklahoma	9904			
Pennsylvania NELAP	68-00485			
Plant Material Permit	PDEP-12-00260			
South Carolina Chemistry	10120001			
South Carolina Radiochemi	10120002			
Tennessee	TN 02934			
Texas NELAP	T104704235-13-8			
Utah NELAP	SC000122013-8			
Vermont	VT87156			
Virginia NELAP	460202			
Washington	C780-12			
Wisconsin	999887790			